

# BigDAWG Polystore: programmer productivity for complex, heterogeneous big data applications

#### Tim Mattson, Intel labs

timothy.g.mattson@intel.com

Intel-PI for the Big Data "Intel Science and Technology Center"

http://istc-bigdata.org/

With help from Vijay Gadepally (MIT LL), Zuohao She (Northwestern), & Adam Dziedzic (U Chicago)















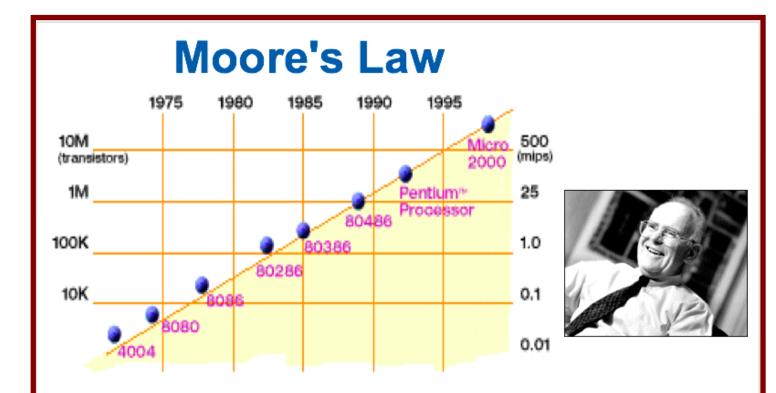








#### I work at Intel ...



- In 1965, Intel co-founder Gordon Moore predicted (from just 3 data points!) that semiconductor density would double every 18 months.
  - He was right! Over the last 50 years, transistor densities have increased as he predicted.

Slide source: UCB CS 194 Fall'2010

Every Intel talk is required to have a Moore's law slide and a ...

# **Legal Disclaimer & Optimization Notice**

- INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
- Software and workloads used in performance tests may have been optimized for performance only
  on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
  using specific computer systems, components, software, operations and functions. Any change to
  any of those factors may cause the results to vary. You should consult other information and
  performance tests to assist you in fully evaluating your contemplated purchases, including the
  performance of that product when combined with other products.
- Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

#### **Optimization Notice**

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

# **Acknowledgements: The BigDAWG Teams**

- Overall BigDAWG vision and leadership
  - Mike Stonebraker<sup>2</sup>, Sam Madden<sup>2</sup>, and Tim Mattson<sup>1</sup>
- System integration and Implementation leadership
  - Vijay Gadepally<sup>2</sup>, Jennie Duggan<sup>5</sup> and Aaron Elmore<sup>6</sup>
- **BigDAWG Monitoring Framework** 
  - Peinan Chen<sup>2</sup>
- **BigDAWG Data Migration** 
  - Adam Dziedzic<sup>6</sup>, Aaron Elmore<sup>6</sup>
- **BigDAWG Executor** 
  - Ankush Gupta<sup>2</sup>
- **BigDAWG Query Optimization** 
  - **Zuohao She<sup>5</sup>**, Surabhi Ravishankar<sup>5</sup>, and Jennie Duggan<sup>5</sup>
- S-Store
  - John Meehan<sup>3</sup>, S. Zdonik<sup>3</sup>, Shaobo Tian<sup>3</sup>, Yulong Tian<sup>3</sup>, Nesime Tatbul<sup>1</sup>, A. Elmore<sup>6</sup>, **Adam Dziedzic<sup>6</sup>**
- Myria
  - Magdalena Balazinska<sup>4</sup> and Bill Howe<sup>4</sup>















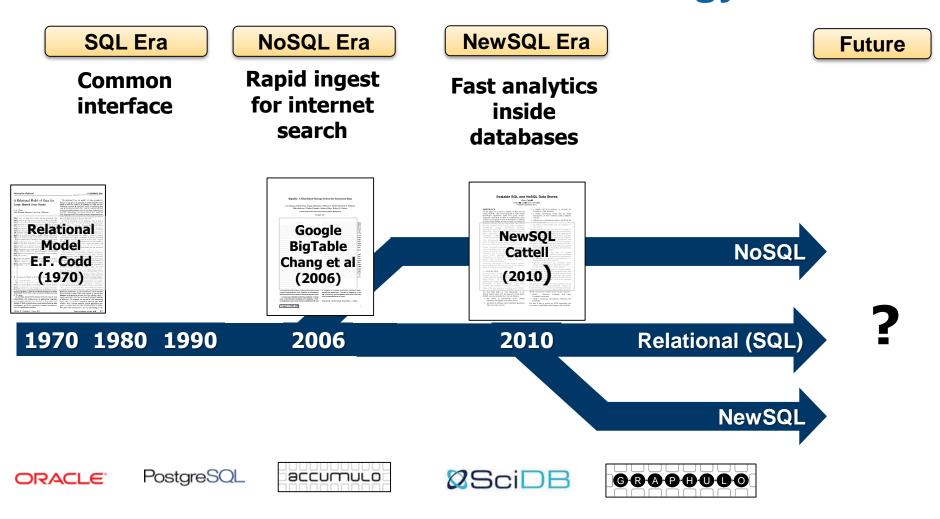




With special thanks for slides and generous support from:

- Vijay Gadepally
- Zuohao She
- Adam Dziedzic

### **Three Eras of Database Technology**



SQL = Structured Query Language NoSQL = Not only SQL

Source: The BigDAWG Polystore System and Architecture, HPEC'2016, Vijay Gadepally

# Big Data in the Real World

 Consider patient data in an Intensive Care Unit (e.g. MIMIC II data set\*)



Demographic

Caregiver notes

Medical charts

Lab test results

Xray, MRI, etc.

The challenge ... apply predictive analytics across all data ... so we can show up to restart a heart before it stops beating!!!

# Big Data in the Real World Messy, heterogeneous, complex, streaming ...

 Consider patient data in an Intensive Care Unit (e.g. MIMIC II data set\*)



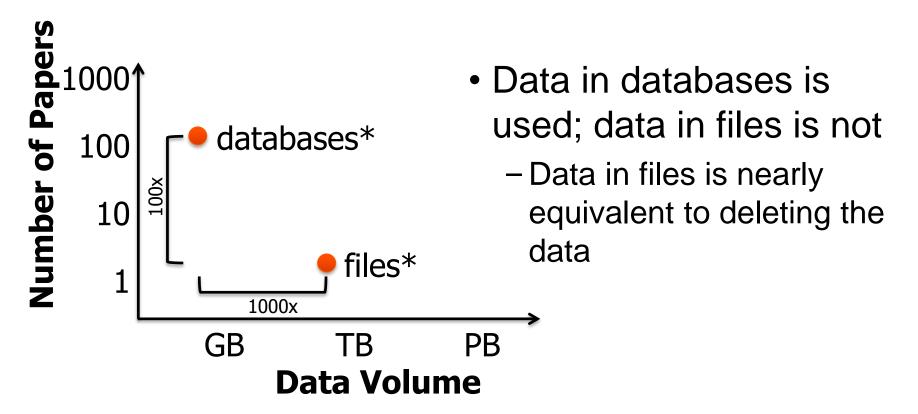
Time series and tabular data are stored in a DBMS.

Other data? Flat files

# MIMC doesn't include images. We are talking to several groups to add an image database to our project

<sup>\*</sup> MIMIC: Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/

# Analysis of published MIMICII papers



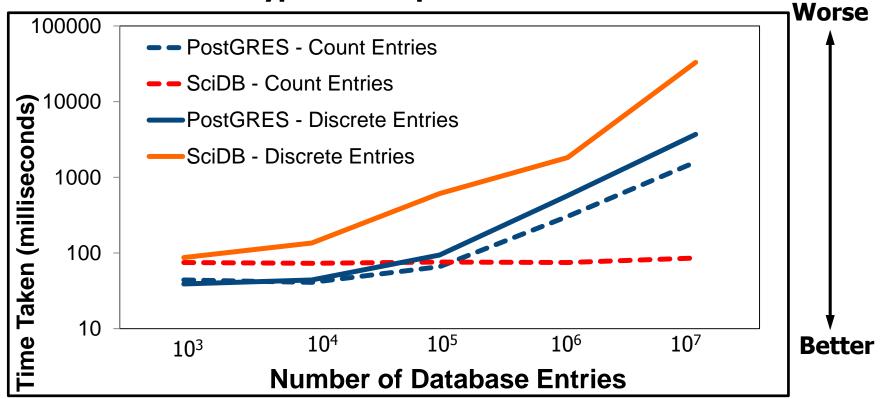
We must bring the power of data bases to all data

\*Based on PhysioNet MIMIC2 ICU data

Source: Vijay Gadepally of MIT Lincoln labs

# So we should cram all the data into one DBMS? NO!!! One Size Does Not Fit All\*

**Typical DB Operations** 



#### Count and Find Operations

SQL database (PostgreSQL) better for some operations than Array database (SciDB)

Third Party Names are the property of their owners

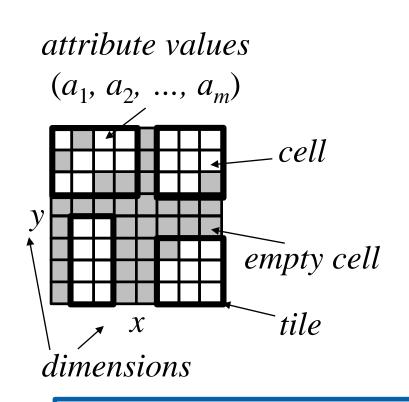
<sup>\*</sup>Stonebraker, Michael, and Ugur Cetintemel. "" One size fits all": an idea whose time has come and gone." 21st International Conference on Data Engineering (ICDE'05). IEEE, 2005.

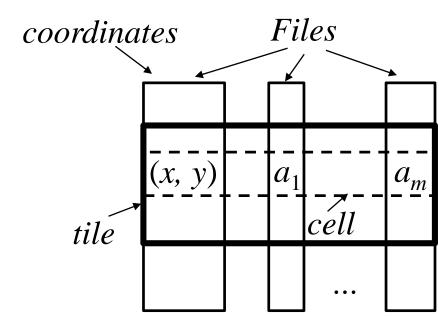
### A more extreme "one size does not fit all" example:

TileDB a new array data storage manager optimized for Sparse Arrays

#### **Logical representation**

#### **Physical representation**





Tile: Atomic unit of processing

Manage array storage as tiles of different shape/size in the index space, but with ~equal number of non-empty cells

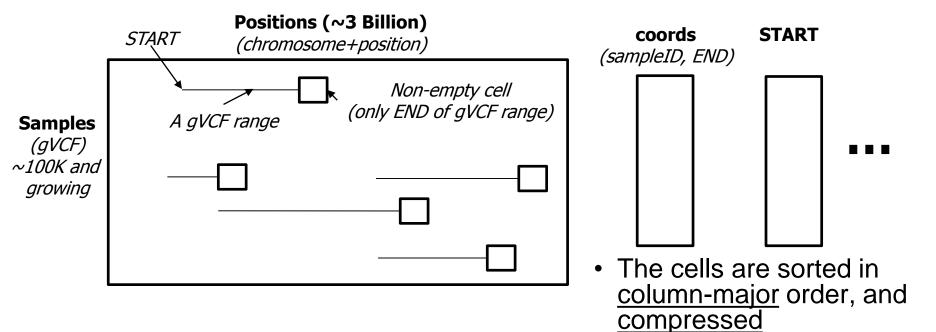
#### **Stavros Papadopoulos of Intel created TileDB**

Open Source release: https://github.com/Intel-HLS/GenomicsDB

# **TileDB** is ideal for storing Genomics Data

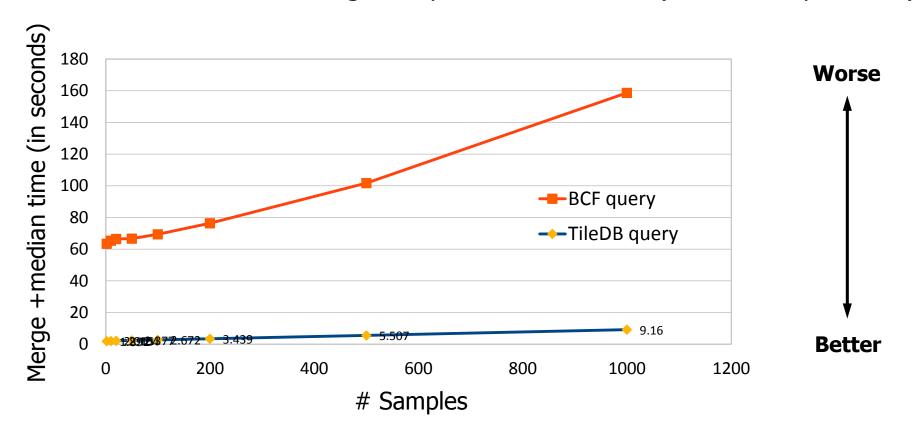
- Represent variation of a sample from a reference Genome (Genome Variant Call format or gVCF)
- Store as a sparse 2D array in TileDB ... store a non-empty cell for every END endpoint of the gVCF ranges

#### Binary files (one per attribute)



#### One Size Does Not Fit All

GenomicsDB/TileDB combine gVCF operation + median (5K random positions)

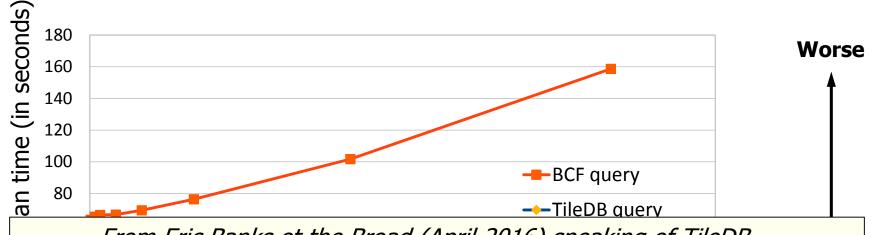


BCF refers to the Broad processing pipeline highly optimized by Intel.

This is what happens when the data-store matches the data

#### One Size Does Not Fit All

GenomicsDB/TileDB combine gVCF operation + median (5K random positions)

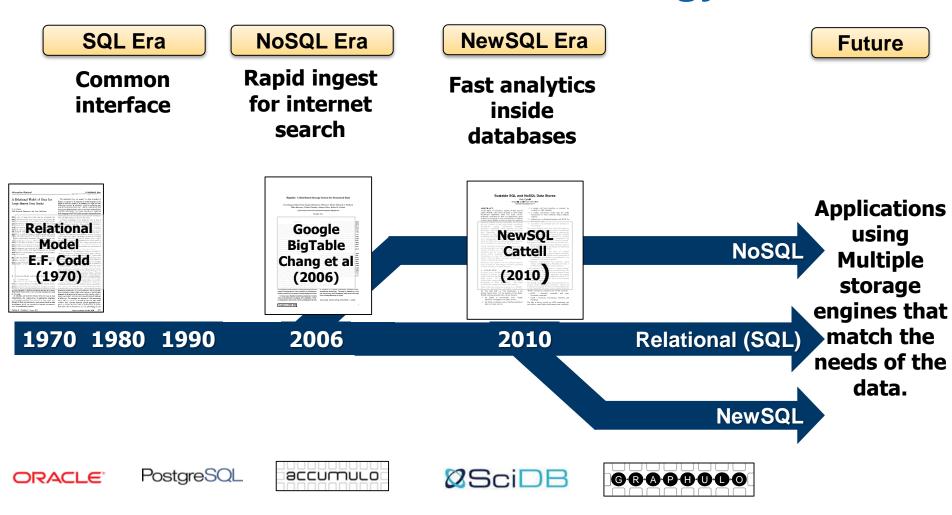


From Eric Banks ot the Broad (April 2016) speaking of TileDB....

"The time it now takes to perform the variant discovery process went from eight days to 18 hours," Banks said. "However, that's with 100 whole genomes. We routinely process projects with thousands of samples, so that speedup itself is truly transformative. ...

http://genomicinfo.broadinstitute.org/acton/media/13431/broad-intel-collaboration

# Three Eras of database technology

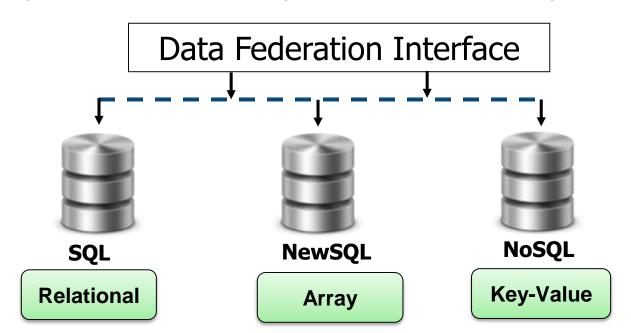


SQL = Structured Query Language NoSQL = Not only SQL

Source: The BigDAWG Polystore System and Architecture, HPEC'2016, Vijay Gadepally

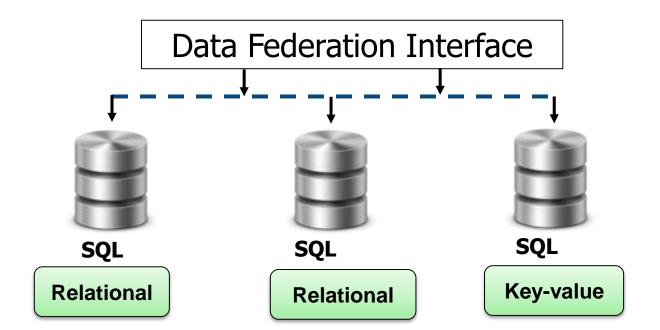
### How do we deal with multiple data bases?

- Programmer productivity requires Data Virtualization.
  - A data access interface that hides the technical details of stored data, such as location, storage structure, API, access language, and storage technology.
- Typical mechanism for Data Virtualization? ... Data Federation
  - A form of data virtualization where the data stored in a <u>heterogeneous</u> set of <u>autonomous</u> data stores is made accessible to data consumers as one integrated data store using on-demand data integration.



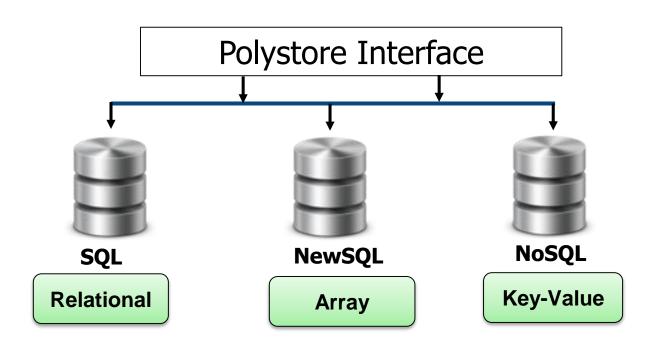
### How do we deal with multiple data bases?

- Data Federation ... in practice
  - The single interface imposes a single data model
  - The DBMS are autonomous … not integrated!
- Therefore, disparate data models in the DBMS are hard to support and the federated DBMS are <u>typically</u> based on a single (e.g. SQL) data model ....
  - forces a "One Size Fits All" perspective.



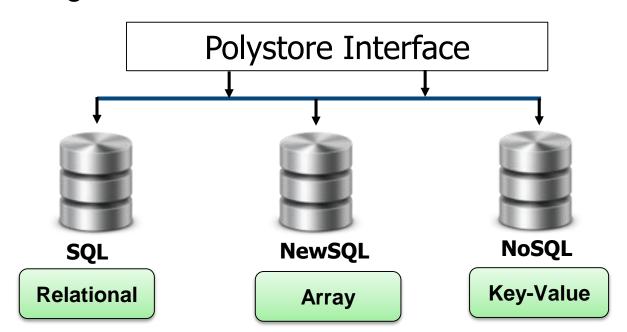
### Polystore: a new twist on Data Federation

- Programmer productivity requires data virtualization, efficient execution requires benefits of queries that exploit features of a particular data-store
- Polystore:
  - A form of data virtualization where the data stored in a <u>heterogeneous</u> set of <u>integrated</u> data stores is exposed through a common interface but the features of the individual data-stores are visible.

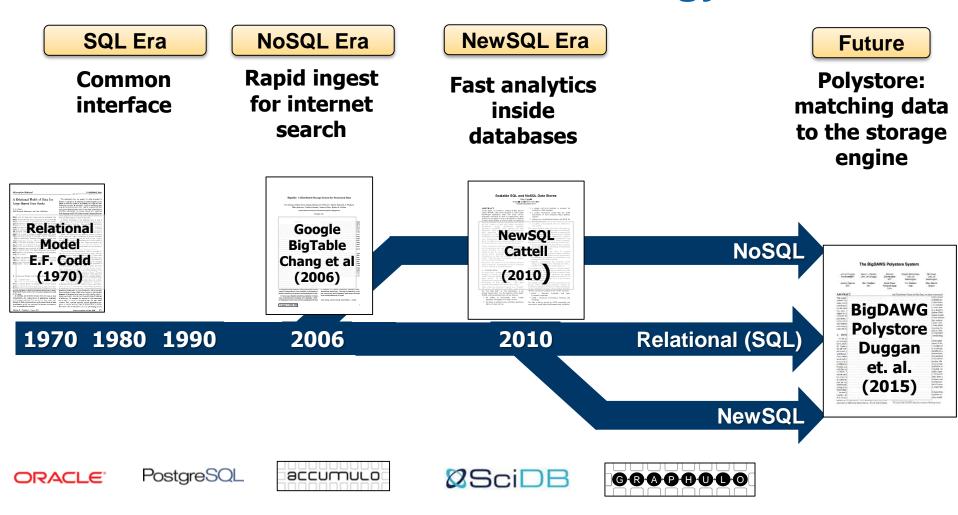


### Polystore: a new twist on Data Federation

- Polystore Design forces.
  - Location independence: A query does not care which data-store in the polystore system it will target. A huge convenience for programmers.
  - Semantic Completeness: Any query natively supported by a data-store in the Polystore system can be expressed.
- The challenge in designing a Polystore system is to balance "location independence" and "Semantic Completeness" without compromising efficient execution.



# Three Eras of database technology



SQL = Structured Query Language NoSQL = Not only SQL

Source: The BigDAWG Polystore System and Architecture, HPEC'2016, Vijay Gadepally

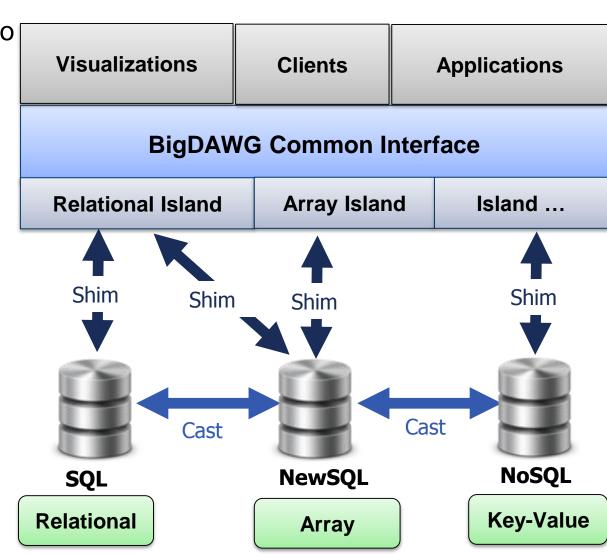
# **BigDAWG: A Prototype Polystore System**

#### BigDAWG

 Polystore: match data to the storage engine

#### BigDAWG Islands

- A data model + query operations
- One or more storage engines
- "Shim" connects a BigDAWG query to a data engine
- "Cast" migrates data from one engine to another



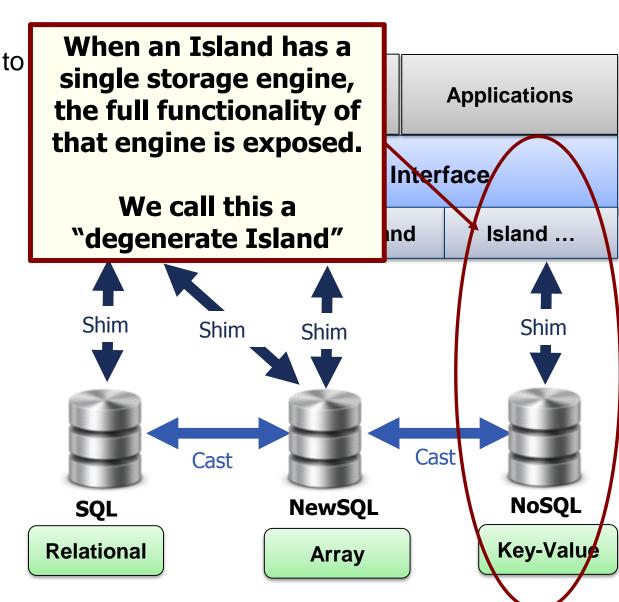
# **BigDAWG: A Prototype Polystore System**

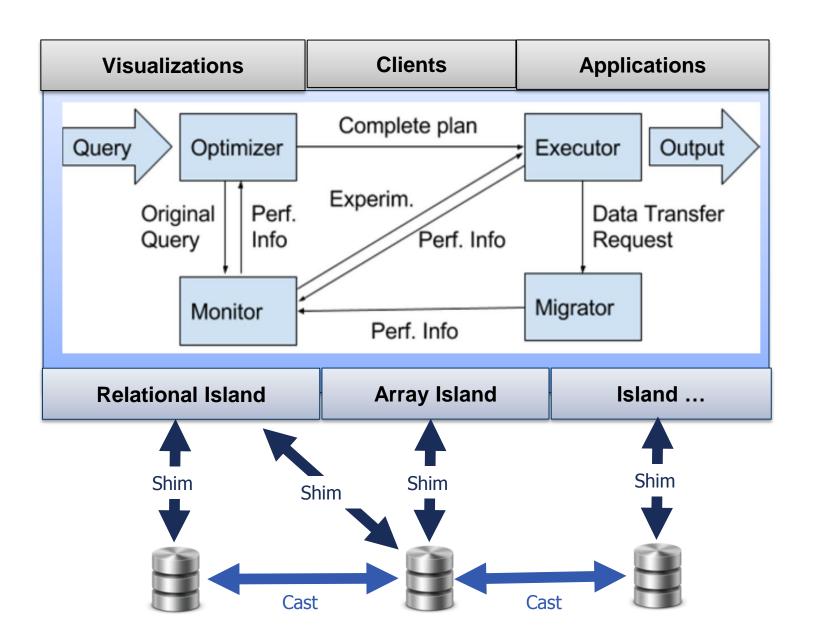
#### BigDAWG

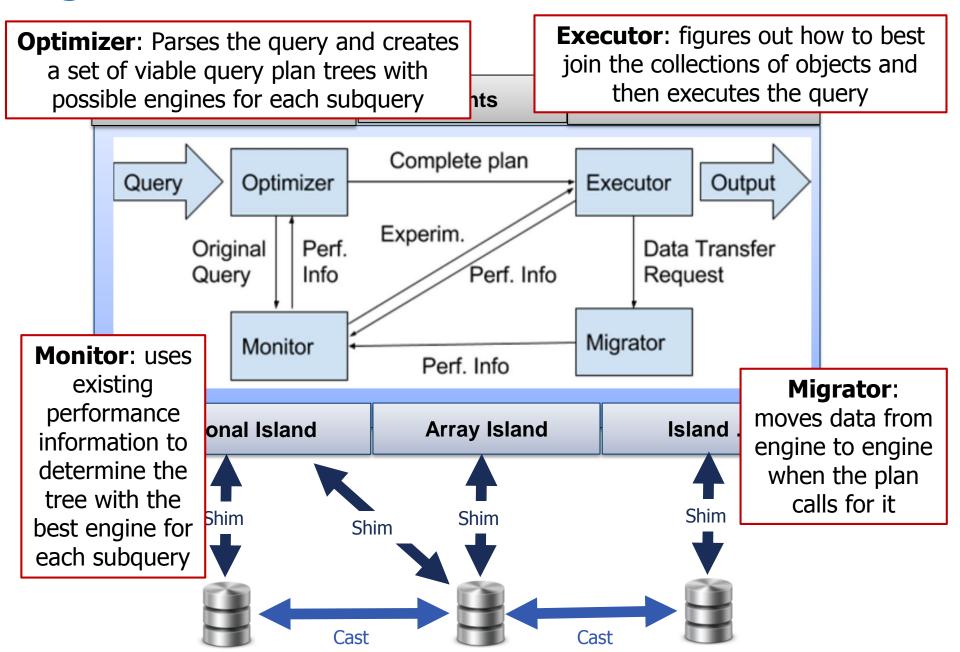
 Polystore: match data to the storage engine

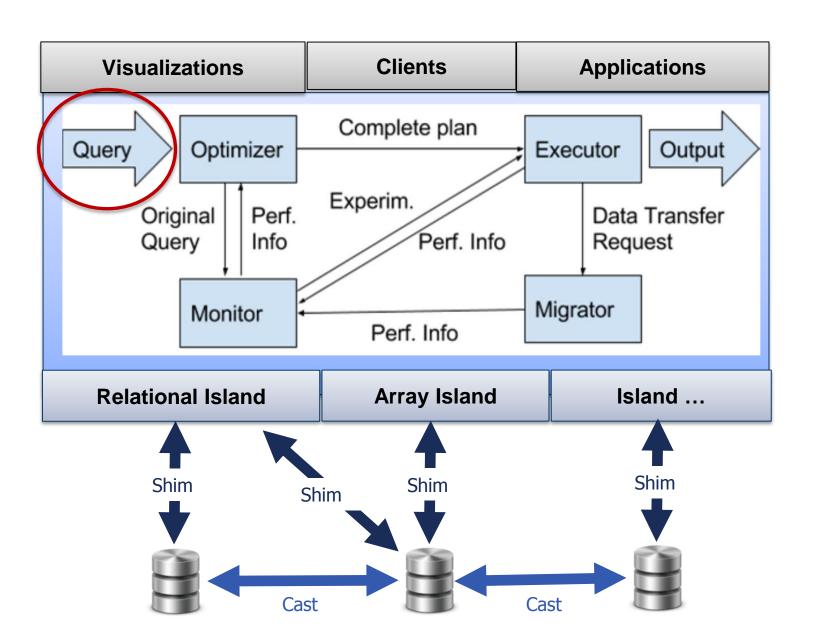
#### BigDAWG Islands

- A data model + query operations
- One or more storage engines
- "Shim" connects a BigDAWG query to a data engine
- "Cast" migrates data from one engine to another









```
Using the array island, issue the
                                 island's filter operation
bdarray(
 filter(
                        filter([source_array], [logical_expression])
   bdcast(
      bdrel( select bodc_sta, time_stp, interp_sal
            from sampledata.main)
     , intrp_salinity
     , '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]'
     , array)
    interp_sal < 35)
                              Result is an array with rows for which
                                     interp_sal is less than 35
```

Create the array for the filter op by casting the table formed by this subquery from the relational island to the array island

```
bdarray(

filter(

bdcast(

bdrel( select bodc_sta, time_stp, interp_sal

from sampledata.main)

, intrp_salinity

, '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]'

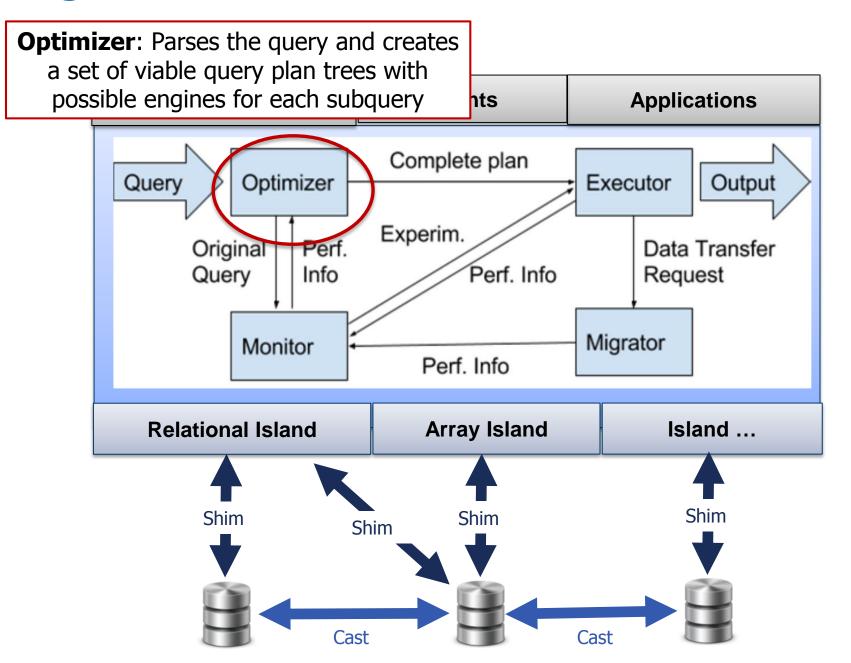
, array)

, interp_sal < 35))
```

Bdcast ([source\_query], name, [Dest\_schema\_parameters], [target])

```
attributes (bodc_sta, time_stp, and interp_sal) with
                   unbounded number of rows (i=0:*) broken down into
bdarray(
                             chunks of size 1000 with 0 overlap
 filter(
   bdcast(
      bdrel( select bodc_sta, time_stp, interp_sal
            from sampledata.main)
      intrp_salinity
     , '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]'
     , array
   , interp_sal < 35))
```

The array created is named "intrp\_salinity". It has three

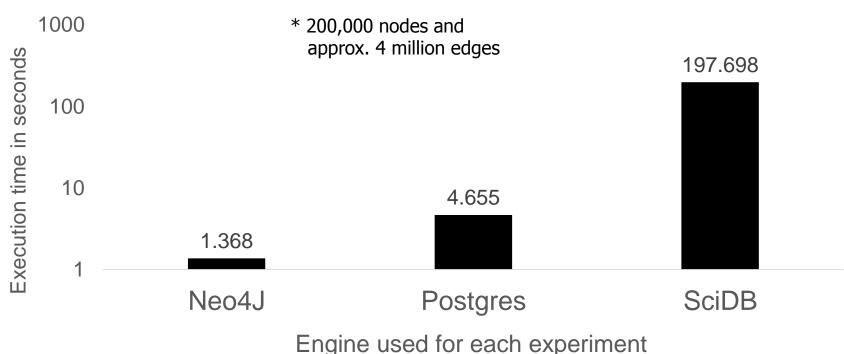


### Optimizer: turns queries into a logical plan

- The Optimizer generates Logical plans corresponding to the input query.
  - Works with the "monitor" to track historic plans and select the best plan.
- The Optimizer uses planners native to an Island.
- What about cross Island Optimization?
  - We need to build these ourselves

#### **Optimization:** Finding the right Island to run a query





Can we translate queries between Islands and then run on the Island that gives us the best performance?

SciDB array database from kparadigm4



Neo4 graph database fror (



### Goal: Translate queries between islands

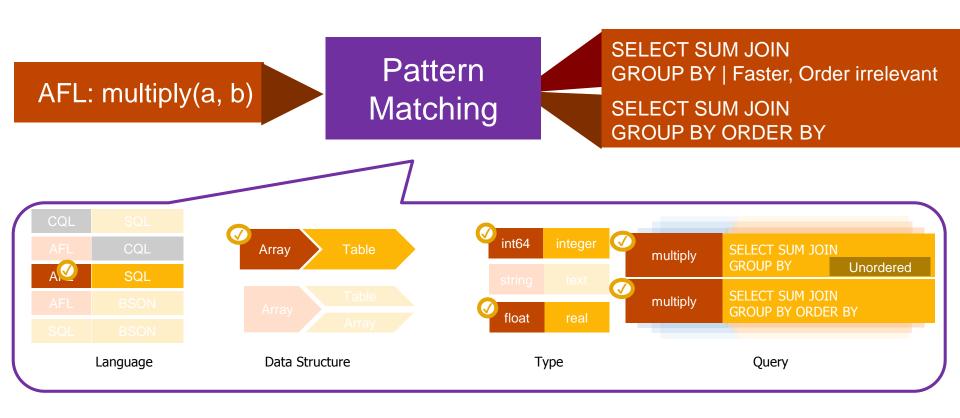
- Approach:
  - Build a translation framework
  - Equivalence rules mapping between Islands
- Example equivalence rule ...

```
Rule name

    {name: "SQL to AFL matrix multiplication",

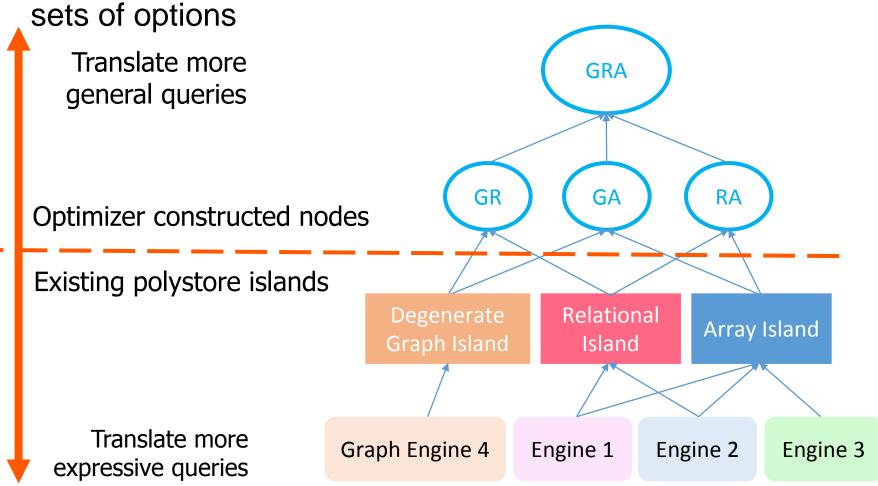
    source: SQL, destination: AFL,
                                                                   Islands
    {matrix_1 : table,
     original_attribute:
                                                                      Data
       {row: integer, col: integer, value: double precision}},
                                                                    Structure
     destination_attribute:
                                                                   mappings
       {row : dimension, col : dimension, value : double}
    {matrix_2 : ...}
    source query: "SELECT m1.row, m2.col, ...",
                                                                     Query
    destination_query: "spgemm(matrix 1, matrix 2)"}
                                                                   mappings
```

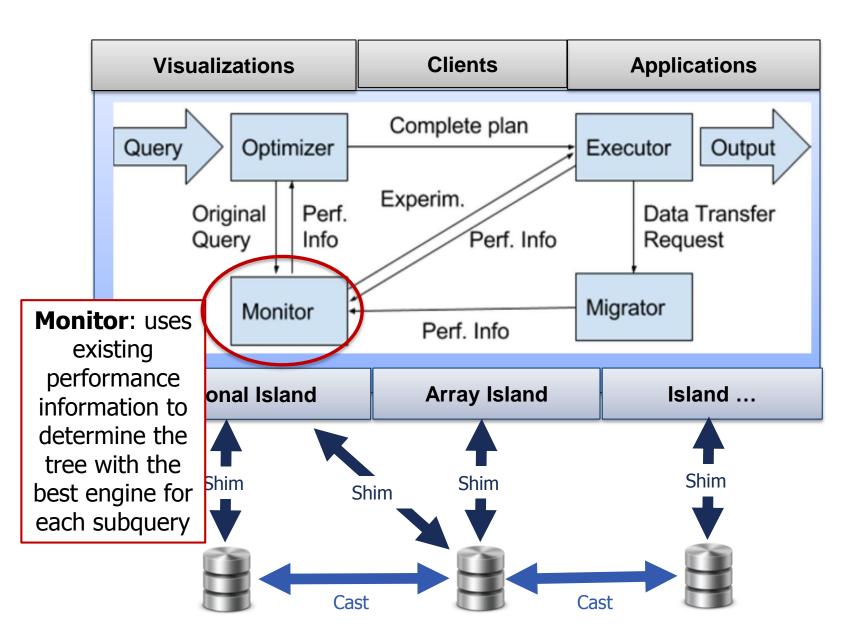
### Using Equivalence Rules for translation



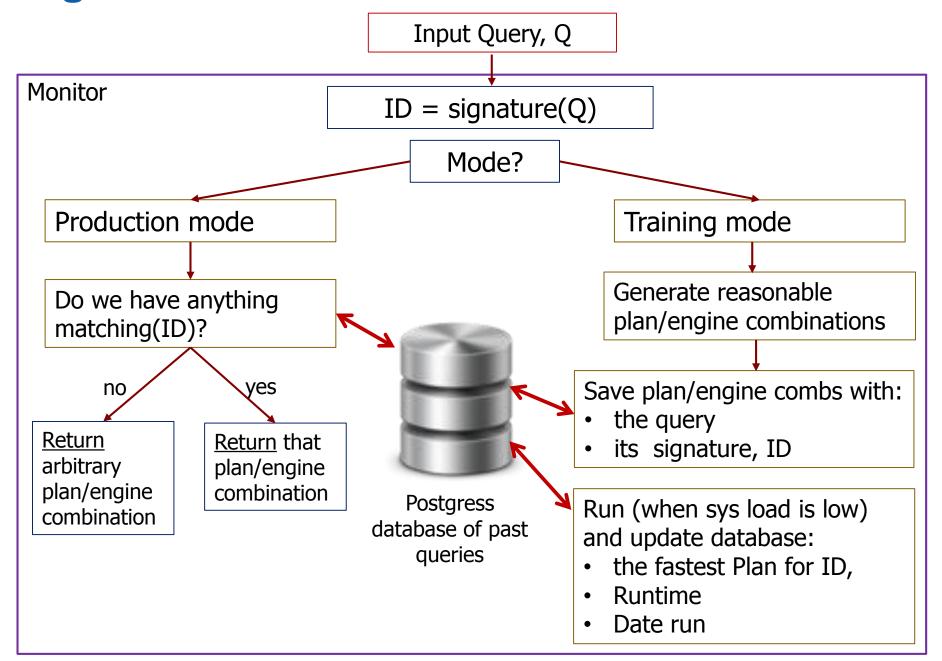
#### **The Semantic Lattice**

 Organize collections of equivalence rules (both generated and user provided) into a semantic lattice to reason over sets of options





#### BigDAWG Monitor: find best execution plan for a Query



### **Production mode gains**

| Query No. | Training Mode | Production Mode | Without Monitor |
|-----------|---------------|-----------------|-----------------|
| 1         | 826 ms        | 265 ms          | 281 ms          |
| 2         | 882 ms        | 190 ms          | 346 ms          |
| 3         | 62539 ms      | 20559 ms        | 20990 ms        |
| 4         | 491 ms        | 160 ms          | 166 ms          |
| 5         | 6592 ms       | 1977 ms         | 2308 ms         |
| 6         | 24294 ms      | 6146 ms         | 9074 ms         |
| 7         | 28165 ms      | 7648 ms         | 10259 ms        |
| 8         | 19073 ms      | 4496 ms         | 7289 ms         |
| 9         | 15806 ms      | 4652 ms         | 5577 ms         |
| 10        | 78487 ms      | 23496 ms        | 27496 ms        |

- 10 different queries with two possible query trees tested
- Training mode each query run through two possible query trees
- Production mode executor runs best query determined by training mode
- Best case: Production mode is ~60% of time running without Monitor (randomly select 1 of the 2 possible query trees)

## **Production mode gains**

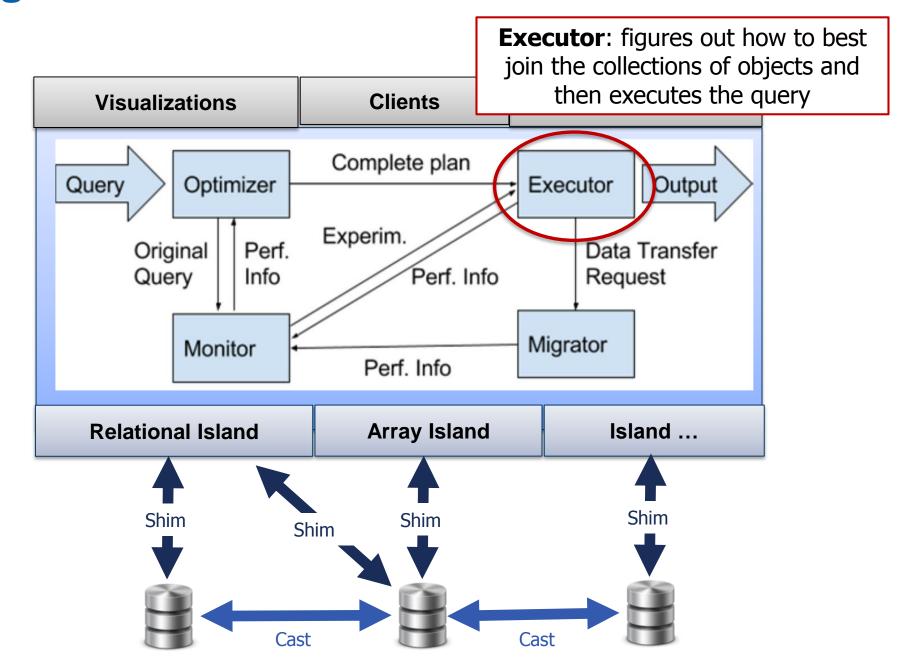
| Query No. | Training Mode | Production Mode | Without Monitor |
|-----------|---------------|-----------------|-----------------|
| 1         | 826 ms        | 265 ms          | 281 ms          |
| 2         | 882 ms        | 190 ms          | 346 ms          |
| 3         | 62539 ms      | 20559 ms        | 20990 ms        |
| 1 4       | 491 ms        | 160 ms          | 166 ms          |

This is all very preliminary ... we know there is much left to explore before we have a production worthy monitor.

But early results are promising. Future work:

- Different Signature definitions to improve matching and reduce searching times.
- Explore a broader range of queries and engines
- Machine learning to predict "best" plans for new queries even when matching queries aren't available.
- Best case: Production mode is ~60% or time running without infonitor (randomly select 1 of the 2 possible query trees)

#### **BigDAWG Middleware**

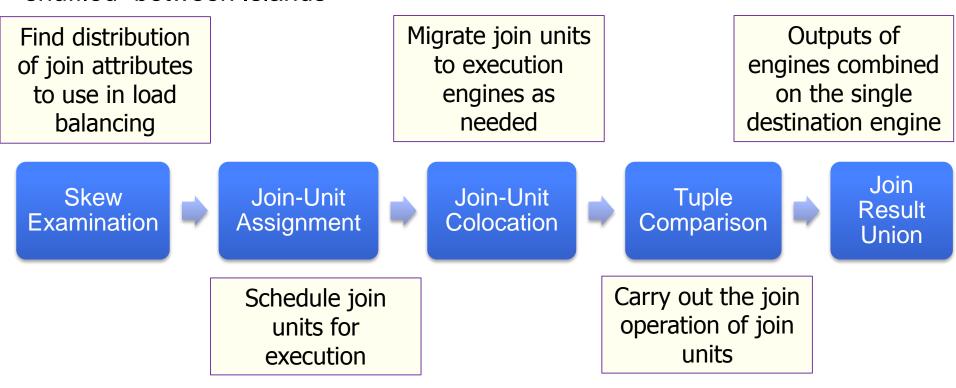


#### The BigDAWG Executor

- The executor receives a Logical Query Plan from the optimizer
  - Logical plan: an execution graph ... nodes with tasks and dependencies
- Basic nodes that map onto a single island
  - Issue executions on respective islands
  - Execute in parallel with a dataflow pattern
- Complex executions spanning Islands are more involved.

#### The BigDAWG Executor: complex queries

Consider the Shuffle join: A multi-engine join where query predicates are "shuffled" between Islands



- join-units: small non-overlapping ranges of tuples (rows in PostgreSQL, cells in SciDB, key-value pairs in Accumulo, etc.) participating in the join.
- Each join-unit consists of a fraction of the full query predicate, and tuples are mapped to a join-unit based on the value of their join attribute.

#### Join-Unit assignments

- The challenge is to distribute join-units (i.e. "computations") among engines to maximize performance.
- Several different strategies were considered
  - DFB: Move all tables to the final destination engine in the plan.
  - MFB: Pick the engine that requires movement of smallest tables
  - Hash: Randomly assigns tuples to participating engines
  - MBH: Assign-join unit to engine that minimizes tuple movement
  - Tabu: A local optimization algorithm that improves on the MBH result

#### Experiment

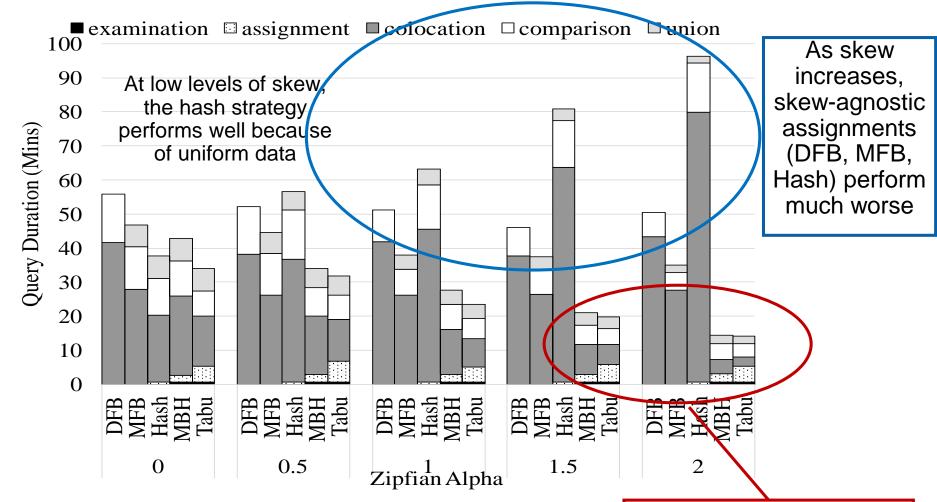
- Generate data sets with known skew from a Zipf (power law) distribution ranging from uniform ( $\alpha$ =0) to heavily skewed ( $\alpha$ =2)
- Considered full table scan vs sampling for understanding skew ...
   sampling was less expensive and resulted in good distributions.

Skew: a measure of how uneven the distribution of data is in a Data Base.

Skew agnostic

#### **Shuffle Join results:**

#### Different load balancing algorithms and data-skews



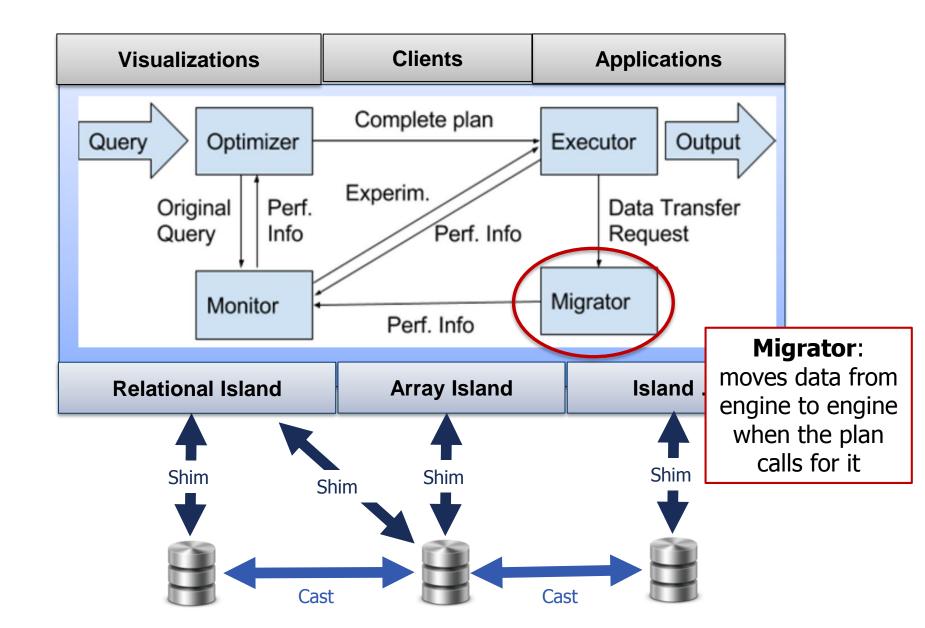
#### 2 Postgress instances running:

SELECT \* FROM A, B WHERE A.id=B.id

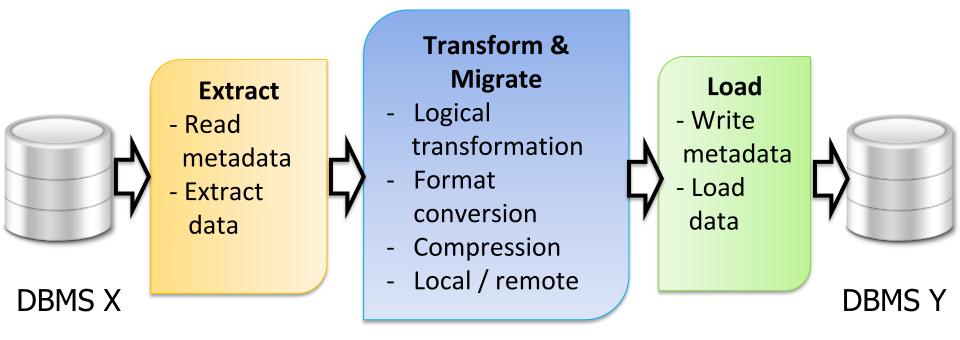
System 1: Four 3.5 GHz Intel® Xeon® cores, 8 GB, ~150 GB Data. System 2: One 3.5 GHz Intel® Xeon® cores, 8 GB, ~75GB Data

MBH and Tabu consider skew to produce a more balanced load ... hence outperform other methods

#### **BigDAWG Middleware**



## Data Migrator Pipeline



#### No disk materialization

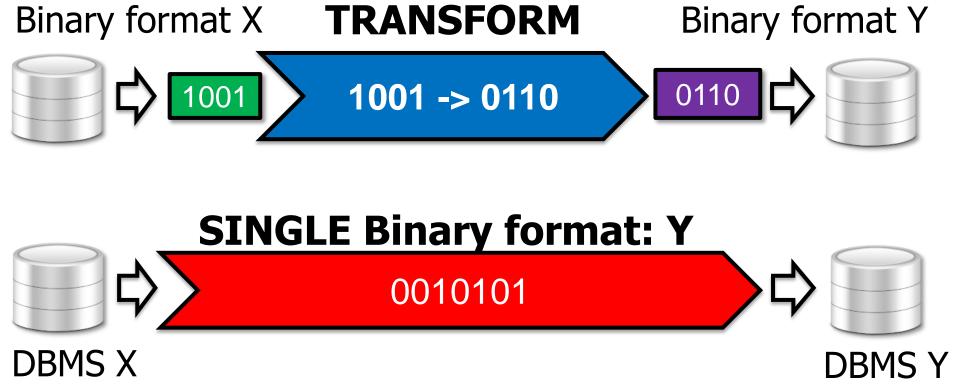
## Current approach: CSV migration

#### **CSV** format

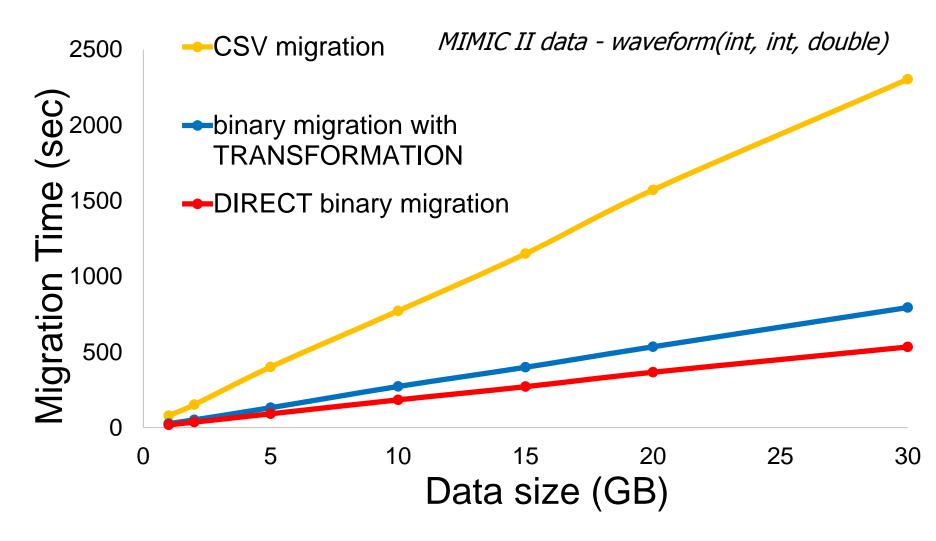
**DBMS** X

**DBMS Y** 

## Our approach: binary migration

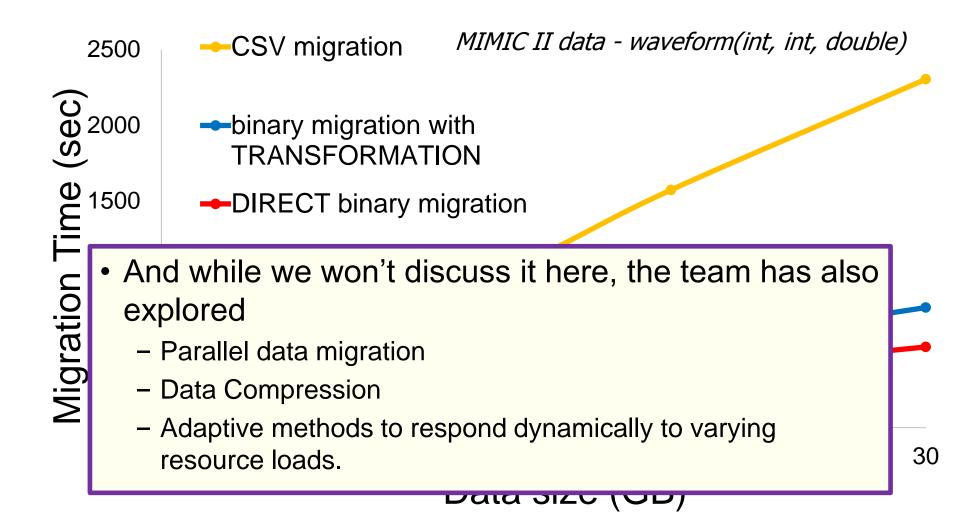


## Data Migration from PostgreSQL to SciDB



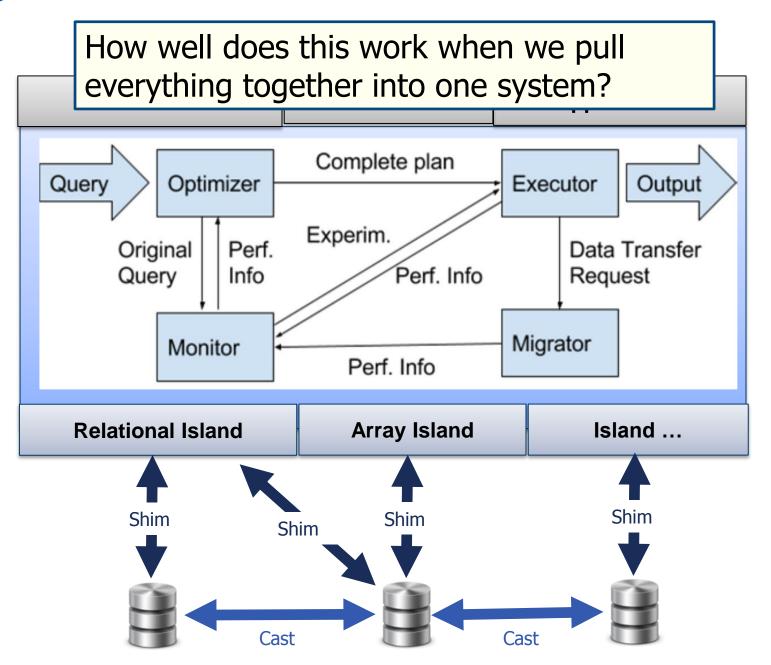
TRANSFORMATION is 3X, DIRECT is 4X faster than CSV migration 48

## Data Migration from PostgreSQL to SciDB



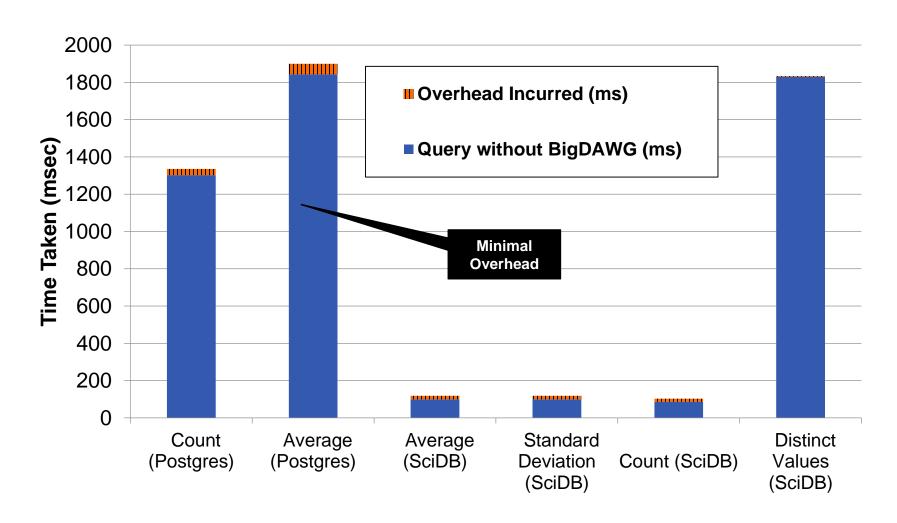
TRANSFORMATION is 3X, DIRECT is 4X faster than CSV migration 49

#### **BigDAWG Middleware**



### **Prototype BigDAWG Overhead**

## Overhead Incurred When Using BigDAWG For Common Database Queries



## Big Data in the real world Messy, heterogeneous, complex, streaming ...

 Consider patient data in an Intensive Care Unit (e.g. MIMIC II data set\*)



<sup>\*</sup> MIMIC: Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/

<sup>#</sup> MIMC doesn't include images. We are talking to several groups to add an image database to our project

## **BigDAWG: A Prototype Polystore System**

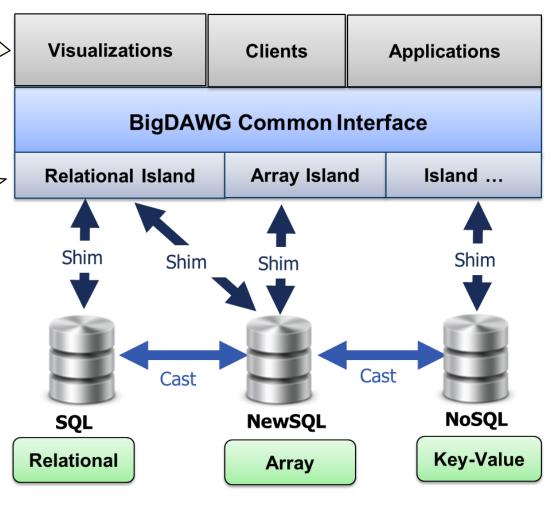
#### **Application level tools**

- Data Exploration
- Data Visualization
- Deep Analytics
- Streaming Analytics
- Extract-Transform-Load

#### **Islands**

- D4M (Associative Arrays)
- Myria (SQL+ Iteration)
- Streams
- Degenerate Islands





#### **BigDAWG Streaming Island: S-Store**

#### S-Store:

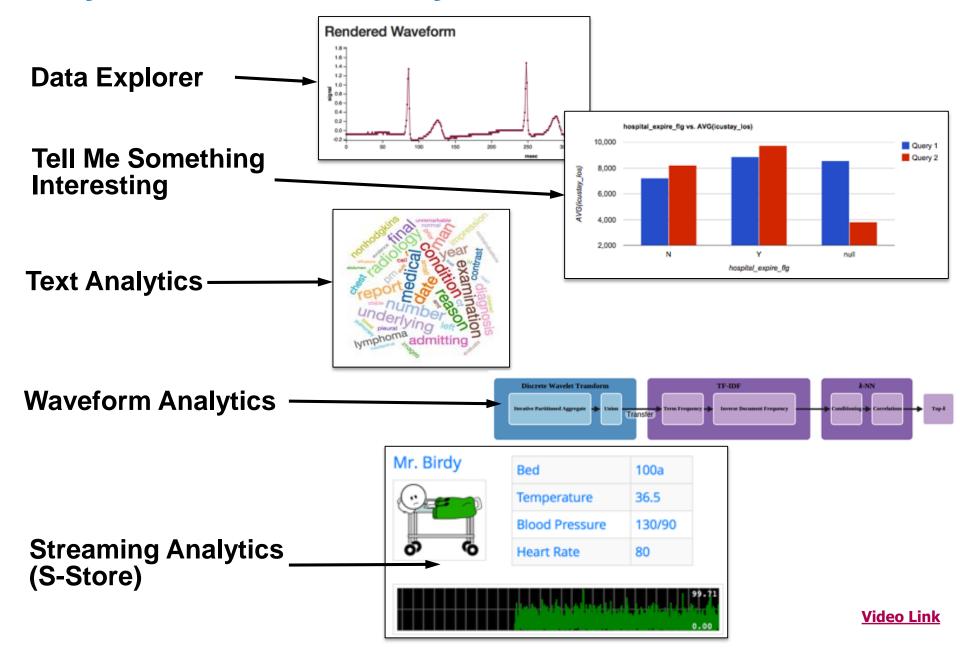
- A system for Streaming transactional semantics (ACID, order, exactly once)
- ETL: Extract +
   Transform as a
   streaming process ...
   potentially much
   more efficient than
   current approaches!

Streaming

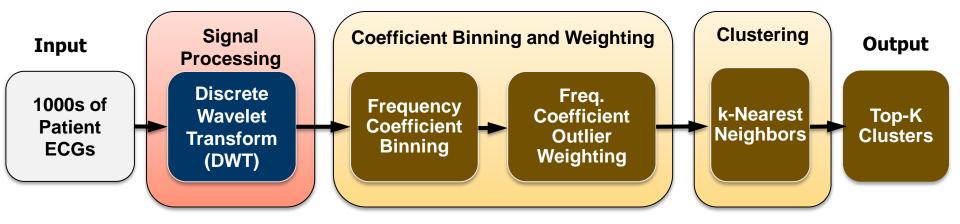
Data



## Polystore Case Study: MIMIC II Dataset



## **BigDAWG Polystore Waveform Analytics**



- Goal:
  - Find patients with similar ECG time-series\*
- Procedure
  - Perform Discrete Wavelet Transform of ECG
  - Generate wavelet coefficient histogram
  - TF-IDF waveform coefficients (weight rare changes higher)
  - Cluster and correlate against other ECGs:

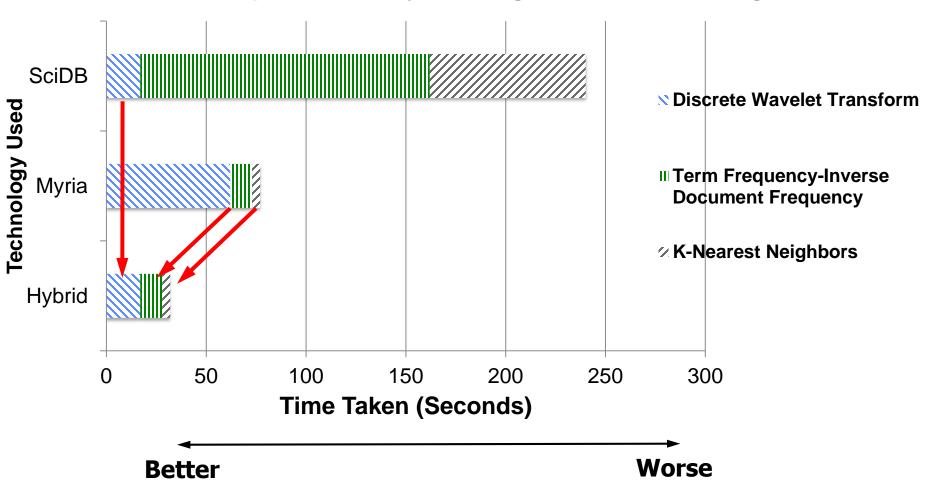
- Show timings for individual components in two different DBMS scenarios
  - Option 1: Do everything in one DB
  - Option 2: Use the DB most suited for each component
    - Tough without coordinator SW
    - Incur inter-database cast operation overhead

TF-IDF=Term Frequency-Inverse Document Frequency

<sup>\*</sup> A novel method for the efficient retrieval of similar multiparameter physiologic time series using wavelet-based symbolic representations, Saeed & Mark, AMIA 2006

#### **Polystore Analytics Performance**

#### Time taken to perform analytic using different technologies



#### **Future work**

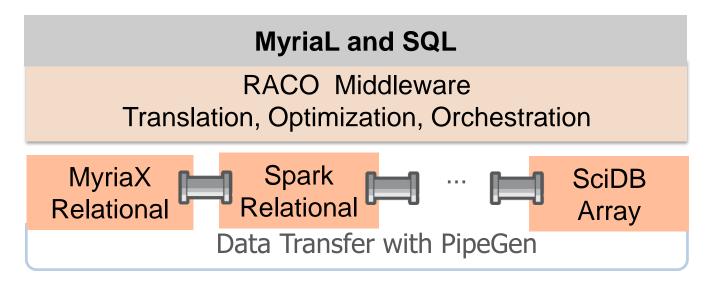
- Open source release of BigDAWG Q1'2017
- Explore Features in Myria that can help BigDAWG

## 



Myria is a Polystore system ... emphasizes location independence

- Supports operations across multiple data stores
- Includes its own query execution engine MyriaX
- Occupies a hybrid relational-array Island in BigDAWG



#### Myria is a Cloud Service

- Deployed in the Amazon cloud
- Focus on efficiency and productivity
- Tested on applications from multiple scientific domains

#### **Future work**

- Open source release of BigDAWG Q1'2017
- Explore Features in Myria that can help BigDAWG
  - Cloud infrastructure
  - Web front end
  - Automatically generated casts with Mryia PipeGen
- Explore probabilistic data structures in the executor to further reduce data transfers.
- Explore additional datasets to stress-test the system
  - Ocean Metagenomics work underway
- Add new Islands
  - TileDB, Tuppleware (from Brown)
- Build on S-Store work to support ETL capabilities in BigDAWG.

#### Conclusion

- The future belongs to polystore systems
  - A single high level data management system that is composed of many individual storage management systems.
    - Storage management matches the data for a better performance.
    - Analytics embedded into the storage managers to keep computing near the data.
- BigDAWG is an effective Prototype to prove the concept.
  - There is a great deal of work needed to turn it into a general purpose tool for data scientists.
  - Early results, however, are encouraging

# Workshop: Managing Heterogeneous Big Data co-located with IEEE Big Data Conference https://goo.gl/oLFR1F

#### Research topics included in the workshop:

- New Computational Models for Big Data
- Languages/Models for integrating disparate data (e.g. graphs, arrays, relations)
- Query evaluation and optimization in federated or polystore systems
- High Performance/Parallel Computing Platforms for Big Data
- Integration of HPC and Big Data platforms
- Data Acquisition, Integration, Cleaning, and Best Practices
- Complex Big Data Applications in Science, Engineering, Medicine, Healthcare, Finance, Business, Transportation, Retailing, Telecommunication, Government and Defense applications
- Efficient data movement and scheduling, failures and recovery for analytics

#### Keynotes



Luna Dong of Amazon



Fatma Ozcan of IBM

#### **Details**

October 10, 2016: Full workshop papers submission deadline November 15, 2016: Camera-ready of accepted papers

<u>December 5-8, 2016:</u> Workshops Dates Contact: Vijay Gadepally (<u>vijayg@mit.edu</u>)

#### References (All in the HPEC'2016 Proceedings)

- The BigDAWG Polystore System and Architecture Vijay Gadepally, Peinan Chen (MIT), Jennie Duggan (Northwestern University), Aaron Elmore (University of Chicago), Brandon Haynes (University of Washington), Jeremy Kepner, Samuel Madden (MIT), Tim Mattson (Intel), Michael Stonebraker (MIT)
- <u>BigDAWG Polystore Query Optimization Through Semantic Equivalences</u>

  Zuohao She, Surabhi Ravishankar, Jennie Duggan (Northwestern University)
- The BigDawg Monitoring Framework Peinan Chen, Vijay Gadepally, Michael Stonebraker (MIT)
- Cross-Engine Query Execution in Federated Database Systems Ankush M. Gupta, Vijay Gadepally, Michael Stonebraker (MIT)
- <u>Data Transformation and Migration in Polystores</u> Adam Dziedzic, Aaron J. Elmore (University of Chicago), Michael Stonebraker (MIT)
- Integrating Real-Time and Batch Processing in a Polystore John Meehan, Stan Zdonik Shaobo Tian, Yulong Tian (Brown University), Nesime Tatbul (Intel), Adam Dziedzic, Aaron Elmore (University of Chicago)