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Abstract

Bigtable is a distributed storage system for managing

structured data that is designed to scale to a very large

size: petabytes of data across thousands of commodity

servers. Many projects at Google store data in Bigtable,

including web indexing, Google Earth, and Google Fi-

nance. These applications place very different demands

on Bigtable, both in terms of data size (from URLs to

web pagesto satellite imagery) and latency requirements

(frombackendbulk processing to real-timedataserving).

Despite these varied demands, Bigtable has successfully

provided a flexible, high-performancesolution for all of

theseGoogleproducts. In thispaper wedescribethesim-

pledatamodel provided by Bigtable, which givesclients

dynamic control over data layout and format, and we de-

scribe thedesign and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,

implemented, and deployed a distributed storage system

for managing structured data at Google called Bigtable.

Bigtable is designed to reliably scale to petabytes of

data and thousands of machines. Bigtable has achieved

several goals: wide applicability, scalability, high per-

formance, and high availability. Bigtable is used by

more than sixty Google products and projects, includ-

ing Google Analytics, Google Finance, Orkut, Person-

alized Search, Writely, and Google Earth. These prod-

ucts use Bigtable for a variety of demanding workloads,

which range from throughput-oriented batch-processing

jobs to latency-sensitive serving of data to end users.

TheBigtableclustersused by theseproductsspan awide

range of configurations, from a handful to thousands of

servers, and storeup to several hundred terabytesof data.

In many ways, Bigtableresemblesadatabase: it shares

many implementation strategies with databases. Paral-

lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable

providesadifferent interfacethansuchsystems. Bigtable

does not support a full relational data model; instead, it

provides clients with a simple data model that supports

dynamic control over data layout and format, and al-

lows clients to reason about the locality propertiesof the

data represented in the underlying storage. Data is in-

dexed using row and column names that can bearbitrary

strings. Bigtablealso treatsdataasuninterpreted strings,

although clients often serialize various forms of struc-

tured and semi-structured data into these strings. Clients

can control the locality of their data through careful

choices in their schemas. Finally, Bigtable schema pa-

rameters let clientsdynamically control whether to serve

dataout of memory or from disk.

Section 2 describes the datamodel in moredetail, and

Section 3 provides an overview of the client API. Sec-

tion 4 briefly describestheunderlyingGoogleinfrastruc-

ture on which Bigtable depends. Section 5 describes the

fundamentals of the Bigtable implementation, and Sec-

tion 6 describes some of the refinements that we made

to improve Bigtable’s performance. Section 7 provides

measurements of Bigtable’s performance. We describe

several examples of how Bigtable is used at Google

in Section 8, and discuss some lessons we learned in

designing and supporting Bigtable in Section 9. Fi-

nally, Section 10 describes related work, and Section 11

presentsour conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-

dimensional sorted map. The map is indexed by a row

key, column key, and a timestamp; each value in themap

is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string
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• Consider patient data in an Intensive Care Unit (e.g. MIMIC 

II data set*)
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Big Data in the Real World

• Demographic 
• Caregiver 

notes
• Medical 

charts
• Lab test 

results
• Xray, MRI, 

etc.

• EKG traces
• Blood 

oxygen
• Blood 

pressure
• EEG traces

The challenge … apply predictive analytics across all data … so we 

can show up to restart a heart before it stops beating!!!

* MIMIC:  Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/ 
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Big Data in the Real World
Messy, heterogeneous, complex, streaming …

• Demographic 
• Caregiver 

notes
• Medical 

charts
• Lab test 

results
• Xray, MRI, 

etc.

• EKG traces
• Blood 

oxygen
• Blood 

pressure
• EEG traces

tables

documents

#images

Arrays

Arrays

Time Series

Time Series

tables

tables

• Consider patient data in an Intensive Care Unit (e.g. MIMIC 

II data set*)

Time series and tabular data are stored in a DBMS.  

Other data?  Flat files

# MIMC doesn’t include images.  We are talking to several groups to add an image database to our project 

* MIMIC:  Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/ 



Analysis of published MIMICII papers

• Data in databases is 

used; data in files is not

–Data in files is nearly 

equivalent to deleting the 

data
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We must bring the power of 
data bases to all data



So we should cram all the data into one DBMS?

NO!!!         One Size Does Not Fit All*

Count and Find Operations

• SQL database (PostgreSQL) better for some operations than Array database (SciDB)
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*Stonebraker, Michael, and Ugur Cetintemel. "" One size fits all": an idea whose time has come and 
gone." 21st International Conference on Data Engineering (ICDE'05). IEEE, 2005.
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A more extreme “one size does not fit all” example:
TileDB a new array data storage manager optimized for Sparse Arrays

x

y

cell

empty cell

dimensions

tile

attribute values

(a1, a2, …, am)

Logical representation Physical representation

(x, y) a1

…

am

celltile

Filescoordinates

Tile: Atomic unit of processing

Manage array storage as tiles of different shape/size in the 
index space, but with ~equal number of non-empty cells

Stavros Papadopoulos of Intel created TileDB

Open Source release:          https://github.com/Intel-HLS/GenomicsDB



TileDB is ideal for storing Genomics Data

Positions (~3 Billion)
(chromosome+position)

Samples
(gVCF)

~100K and 
growing

Non-empty cell
(only END of gVCF range)

A gVCF range

coords
(sampleID, END)

START

…

Binary files (one per attribute)

START

• Represent variation of a sample from a reference Genome 

(Genome Variant Call format or gVCF)

• Store as a sparse 2D array in TileDB … store a non-empty cell 

for every END endpoint of the gVCF ranges

• The cells are sorted in 
column-major order, and 
compressed

Third Party Names are the property of their owners



One Size Does Not Fit All

Better

Worse

1.8922.0152.1042.3772.672 3.439 5.507 9.16
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GenomicsDB/TileDB combine gVCF operation + median (5K random positions)

Intel® Xeon® E5 2697 v2 CPU, 12 cores, dual socket, 128 GB RAM, CentOS6.6, Western Digital 4 TB WD4000F9YZ-0 as a ZFS RAID0 pool.

This is what happens when the data-store matches the data

BCF refers to the Broad processing pipeline highly optimized by Intel.  

Third Party Names are the property of their owners
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GenomicsDB/TileDB combine gVCF operation + median (5K random positions)

Intel® Xeon® E5 2697 v2 CPU, 12 cores, dual socket, 128 GB RAM, CentOS6.6, Western Digital 4 TB WD4000F9YZ-0 as a ZFS RAID0 pool.

This is what happens when the data-store matches the data

BCF is the Broad processing pipeline  highly optimized by Intel.  

From Eric Banks ot the Broad (April 2016) speaking of TileDB….

“The time it now takes to perform the variant discovery 
process went from eight days to 18 hours,” Banks said. 

“However, that’s with 100 whole genomes. We routinely 
process projects with thousands of samples, so that speedup 

itself is truly transformative. …  

http://genomicinfo.broadinstitute.org/acton/media/13431/broad-intel-collaboration
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Abstract

Bigtable is a distributed storage system for managing

structured data that is designed to scale to a very large

size: petabytes of data across thousands of commodity

servers. Many projects at Google store data in Bigtable,

including web indexing, Google Earth, and Google Fi-

nance. These applications place very different demands

on Bigtable, both in terms of data size (from URLs to

web pagesto satellite imagery) and latency requirements

(frombackendbulk processing to real-timedataserving).

Despite these varied demands, Bigtable has successfully

provided a flexible, high-performancesolution for all of

theseGoogleproducts. In thispaper wedescribethesim-

pledatamodel provided by Bigtable, which givesclients

dynamic control over data layout and format, and we de-

scribe thedesign and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,

implemented, and deployed a distributed storage system

for managing structured data at Google called Bigtable.

Bigtable is designed to reliably scale to petabytes of

data and thousands of machines. Bigtable has achieved

several goals: wide applicability, scalability, high per-

formance, and high availability. Bigtable is used by

more than sixty Google products and projects, includ-

ing Google Analytics, Google Finance, Orkut, Person-

alized Search, Writely, and Google Earth. These prod-

ucts use Bigtable for a variety of demanding workloads,

which range from throughput-oriented batch-processing

jobs to latency-sensitive serving of data to end users.

TheBigtableclustersused by theseproductsspan awide

range of configurations, from a handful to thousands of

servers, and storeup to several hundred terabytesof data.

In many ways, Bigtableresemblesadatabase: it shares

many implementation strategies with databases. Paral-

lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable

providesadifferent interfacethansuchsystems. Bigtable

does not support a full relational data model; instead, it

provides clients with a simple data model that supports

dynamic control over data layout and format, and al-

lows clients to reason about the locality propertiesof the

data represented in the underlying storage. Data is in-

dexed using row and column names that can bearbitrary

strings. Bigtablealso treatsdataasuninterpreted strings,

although clients often serialize various forms of struc-

tured and semi-structured data into these strings. Clients

can control the locality of their data through careful

choices in their schemas. Finally, Bigtable schema pa-

rameters let clientsdynamically control whether to serve

dataout of memory or from disk.

Section 2 describes the datamodel in moredetail, and

Section 3 provides an overview of the client API. Sec-

tion 4 briefly describestheunderlyingGoogleinfrastruc-

ture on which Bigtable depends. Section 5 describes the

fundamentals of the Bigtable implementation, and Sec-

tion 6 describes some of the refinements that we made

to improve Bigtable’s performance. Section 7 provides

measurements of Bigtable’s performance. We describe

several examples of how Bigtable is used at Google

in Section 8, and discuss some lessons we learned in

designing and supporting Bigtable in Section 9. Fi-

nally, Section 10 describes related work, and Section 11

presentsour conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-

dimensional sorted map. The map is indexed by a row

key, column key, and a timestamp; each value in themap

is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string
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How do we deal with multiple data bases?

• Programmer productivity requires Data Virtualization.

– A data access interface that hides the technical details of stored data, 

such as location, storage structure, API, access language, and storage 

technology. 

• Typical mechanism for Data Virtualization? … Data Federation

– A form of data virtualization where the data stored in a heterogeneous

set of autonomous data stores is made accessible to data consumers as 

one integrated data store using on-demand data integration. 

15
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How do we deal with multiple data bases?

• Data Federation … in practice

– The single interface imposes a single data model

– The DBMS are autonomous … not integrated!

• Therefore, disparate data models in the DBMS are hard to 

support and the federated DBMS are typically based on a single 

(e.g. SQL) data model …. 

– forces a “One Size Fits All” perspective.

16
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Polystore: a new twist on Data Federation

• Programmer productivity requires data virtualization, efficient 

execution requires benefits of queries that exploit features of a 

particular data-store

• Polystore:

– A form of data virtualization where the data stored in a heterogeneous set 

of integrated data stores is exposed through a common interface but the 

features of the individual data-stores are visible.

17
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Polystore: a new twist on Data Federation

• Polystore Design forces.

– Location independence: A query does not care which data-store in the 

polystore system it will target.  A huge convenience for programmers.

– Semantic Completeness: Any query natively supported by a data-store 

in the Polystore system can be expressed.  

• The challenge in designing a Polystore system is to balance 

“location independence” and “Semantic Completeness” without 

compromising efficient execution.

18
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Abstract

Bigtable is a distributed storage system for managing

structured data that is designed to scale to a very large

size: petabytes of data across thousands of commodity

servers. Many projects at Google store data in Bigtable,

including web indexing, Google Earth, and Google Fi-

nance. These applications place very different demands

on Bigtable, both in terms of data size (from URLs to

web pagesto satellite imagery) and latency requirements

(frombackendbulk processing to real-timedataserving).

Despite these varied demands, Bigtable has successfully

provided a flexible, high-performancesolution for all of

theseGoogleproducts. In thispaper wedescribethesim-

pledatamodel provided by Bigtable, which givesclients

dynamic control over data layout and format, and we de-

scribe thedesign and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,

implemented, and deployed a distributed storage system

for managing structured data at Google called Bigtable.

Bigtable is designed to reliably scale to petabytes of

data and thousands of machines. Bigtable has achieved

several goals: wide applicability, scalability, high per-

formance, and high availability. Bigtable is used by

more than sixty Google products and projects, includ-

ing Google Analytics, Google Finance, Orkut, Person-

alized Search, Writely, and Google Earth. These prod-

ucts use Bigtable for a variety of demanding workloads,

which range from throughput-oriented batch-processing

jobs to latency-sensitive serving of data to end users.

TheBigtableclustersused by theseproductsspan awide

range of configurations, from a handful to thousands of

servers, and storeup to several hundred terabytesof data.

In many ways, Bigtableresemblesadatabase: it shares

many implementation strategies with databases. Paral-

lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable

providesadifferent interfacethansuchsystems. Bigtable

does not support a full relational data model; instead, it

provides clients with a simple data model that supports

dynamic control over data layout and format, and al-

lows clients to reason about the locality propertiesof the

data represented in the underlying storage. Data is in-

dexed using row and column names that can bearbitrary

strings. Bigtablealso treatsdataasuninterpreted strings,

although clients often serialize various forms of struc-

tured and semi-structured data into these strings. Clients

can control the locality of their data through careful

choices in their schemas. Finally, Bigtable schema pa-

rameters let clientsdynamically control whether to serve

dataout of memory or from disk.

Section 2 describes the datamodel in moredetail, and

Section 3 provides an overview of the client API. Sec-

tion 4 briefly describestheunderlyingGoogleinfrastruc-

ture on which Bigtable depends. Section 5 describes the

fundamentals of the Bigtable implementation, and Sec-

tion 6 describes some of the refinements that we made

to improve Bigtable’s performance. Section 7 provides

measurements of Bigtable’s performance. We describe

several examples of how Bigtable is used at Google

in Section 8, and discuss some lessons we learned in

designing and supporting Bigtable in Section 9. Fi-

nally, Section 10 describes related work, and Section 11

presentsour conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-

dimensional sorted map. The map is indexed by a row

key, column key, and a timestamp; each value in themap

is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string
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BigDAWG: A Prototype Polystore System

• BigDAWG
– Polystore: match data to 

the storage engine

• BigDAWG Islands
– A data model + query 
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– One or more storage 
engines 

– “Shim” connects a 
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data engine

– “Cast” migrates data 
from one engine to 
another
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BigDAWG: A Prototype Polystore System

• BigDAWG
– Polystore: match data to 

the storage engine

• BigDAWG Islands
– A data model + query 

operations

– One or more storage 
engines 

– “Shim” connects a 
BigDAWG query to a 
data engine

– “Cast” migrates data 
from one engine to 
another

BigDAWG Common Interface

Visualizations Applications

Cast Cast

SQL NoSQLNewSQL

Relational Array Key-Value

Clients

Relational Island Array Island Island …

Shim Shim Shim Shim

When an Island has a 
single storage engine, 
the full functionality of 
that engine is exposed.

We call this a 
“degenerate Island”



BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim



BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

Optimizer: Parses the query and creates 
a set of viable query plan trees with 
possible engines for each subquery

Monitor: uses 
existing 

performance 
information to 
determine the 
tree with the 

best engine for 
each subquery

Migrator: 
moves data from 
engine to engine 
when the plan 

calls for it

Executor: figures out how to best 
join the collections of objects and 

then executes the query



BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim



A Big DAWG Query

bdarray(

filter(

bdcast(

bdrel( select bodc_sta, time_stp, interp_sal

from sampledata.main)

, intrp_salinity

, '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]‘

, array)

, interp_sal < 35))

25



A Big DAWG Query

bdarray(

filter(

bdcast(

bdrel( select bodc_sta, time_stp, interp_sal

from sampledata.main)

, intrp_salinity

, '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]‘

, array)

, interp_sal < 35))
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Using the array island, issue the 
island’s filter operation

filter([source_array],  [logical_expression])

Result is an array with rows for which 
interp_sal is less than 35



A Big DAWG Query

bdarray(

filter(

bdcast(

bdrel( select bodc_sta, time_stp, interp_sal

from sampledata.main)

, intrp_salinity

, '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]‘

, array)

, interp_sal < 35))

27

Create the array for the filter op by 
casting the table formed by this 

subquery from the relational island 
to the array island

Bdcast ([source_query], name, [Dest_schema_parameters], [target])



A Big DAWG Query

bdarray(

filter(

bdcast(

bdrel( select bodc_sta, time_stp, interp_sal

from sampledata.main)

, intrp_salinity

, '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]‘

, array)

, interp_sal < 35))
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The array created is named “intrp_salinity”.  It has three 
attributes (bodc_sta, time_stp, and interp_sal) with 

unbounded number of rows (i=0:*) broken down into 
chunks of size 1000 with 0 overlap



BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

Optimizer: Parses the query and creates 
a set of viable query plan trees with 
possible engines for each subquery



Optimizer: turns queries into a logical plan

• The Optimizer generates Logical plans corresponding to 

the input query.

– Works with the “monitor” to track historic plans and select the best 

plan.

• The Optimizer uses planners native to an Island.

• What about cross Island Optimization?

– We need to build these ourselves

30



Optimization: Finding the right Island to run a query
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Engine used for each experiment

Path-finding with known ends*
* 200,000 nodes and

approx. 4 million edges

Can we translate queries between Islands and then run on 
the Island that gives us the best performance?

SciDB array database from Neo4 graph database from

Third Party Names are the property of their owners



Goal: Translate queries between islands

• Approach:

– Build a translation framework

– Equivalence rules mapping between Islands

• Example equivalence rule …

32

• {name: “SQL to AFL matrix multiplication”,

source : SQL, destination : AFL, 

{matrix_1 : table, 

original_attribute: 

{row : integer, col : integer, value : double precision}},

destination_attribute:

{row : dimension, col : dimension, value : double}

{matrix_2 : …}

source_query: “SELECT m1.row, m2.col, ...”,

destination_query: “spgemm(matrix_1, matrix_2)”}
Query 

mappings

Data 
Structure 
mappings

Islands

Rule name



Using Equivalence Rules for translation

AFL: multiply(a, b)
SELECT SUM JOIN 

GROUP BY ORDER BY

Pattern 

Matching

SELECT SUM JOIN 

GROUP BY | Faster, Order irrelevant

Type

int64 integer

string text

float real

✔

✔

Language

CQL SQL

AFL CQL

AFL SQL

AFL BSON

SQL BSON

✔

Data Structure

TableArray
✔

Array
Table

Array

Query

SELECT SUM JOIN 
GROUP BY ORDER BY

multiply

SELECT SUM JOIN 
GROUP BY

multiply
✔

✔

Unordered



The Semantic Lattice

• Organize collections of equivalence rules (both generated 

and user provided) into a semantic lattice to reason over 

sets of options

Graph Engine 4 Engine 1 Engine 2 Engine 3

Relational 
Island

Array Island

GA RAGR

GRA

Degenerate 
Graph Island

Translate more 
general queries

Translate more 
expressive queries

Optimizer constructed nodes

Existing polystore islands



BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

Monitor: uses 
existing 

performance 
information to 
determine the 
tree with the 

best engine for 
each subquery



BigDAWG Monitor: find best execution plan for a Query

Input Query, Q

Mode?

Production mode Training mode

Postgress
database of past 

queries

ID = signature(Q)

Do we have anything 
matching(ID)?

Return
arbitrary 
plan/engine 
combination

Return that 
plan/engine 
combination

yesno

Generate reasonable 
plan/engine combinations

Save plan/engine combs with: 
• the query
• its  signature, ID

Monitor

Run (when sys load is low) 
and update database: 
• the fastest Plan for ID,
• Runtime
• Date run



Production mode gains

• 10 different queries with two possible query trees tested

• Training mode – each query run through two possible query trees

• Production mode – executor runs best query determined by training mode

• Best case: Production mode is ~60% of time running without Monitor (randomly 

select 1 of the 2 possible query trees)

37



Production mode gains

• 10 different queries with two possible query trees tested

• Training mode – each query run through two possible query trees

• Production mode – executor runs best query determined by training mode

• Best case: Production mode is ~60% of time running without Monitor (randomly 

select 1 of the 2 possible query trees)
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This is all very preliminary … we know there is much left to 
explore before we have a production worthy monitor.  

But early results are promising.    Future work:
• Different Signature definitions to improve matching and 

reduce searching times.
• Explore a broader range of queries and engines
• Machine learning to predict “best” plans for new queries 

even when matching queries aren’t available.



BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

Executor: figures out how to best 
join the collections of objects and 

then executes the query



The BigDAWG Executor 

• The executor receives a Logical Query Plan from the 

optimizer

– Logical plan: an execution graph … nodes  with tasks and 

dependencies

• Basic nodes that map onto a single island

– Issue executions on respective islands

– Execute in parallel with a dataflow pattern

• Complex executions spanning Islands are more involved.

40



The BigDAWG Executor: complex queries

• join-units: small non-overlapping ranges of tuples (rows in PostgreSQL, cells in 

SciDB, key-value pairs in Accumulo, etc.) participating in the join.

• Each join-unit consists of a fraction of the full query predicate, and tuples are 

mapped to a join-unit based on the value of their join attribute.

41

Skew 
Examination

Join-Unit 
Assignment

Join-Unit 
Colocation

Tuple 
Comparison

Join 
Result 
Union

Consider the Shuffle join: A multi-engine join where query predicates are 

“shuffled” between Islands

Find distribution 
of join attributes 

to use in load 
balancing

Schedule join 
units for 
execution

Migrate join units 
to execution 
engines as 

needed

Carry out the join 
operation of join 

units

Outputs of 
engines combined 

on the single 
destination engine 



Join-Unit assignments
• The challenge is to distribute join-units (i.e. “computations”) 

among engines to maximize performance.

• Several different strategies were considered 

– DFB: Move all tables to the final destination engine in the plan.

– MFB: Pick the engine that requires movement of smallest tables

– Hash: Randomly assigns tuples to participating engines

– MBH: Assign-join unit to engine that minimizes tuple movement

– Tabu: A local optimization algorithm that improves on the MBH result

• Experiment

– Generate data sets with known skew from a Zipf (power law) 

distribution ranging from uniform (α=0) to heavily skewed (α=2)

– Considered full table scan vs sampling for understanding skew .. 

sampling was less expensive and resulted in good distributions.

42DFB: Destination Full Broadcast,       MFB: Minimal Full Broadcast,     MBH: Minimum bandwidth Heuristic

Skew 
agnostic

Skew: a measure of how uneven the distribution of data is in a Data Base. 
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Shuffle Join results:
Different load balancing algorithms and data-skews

MBH and Tabu consider 
skew to produce a more 
balanced load … hence 

outperform other methods

As skew 
increases, 

skew-agnostic 
assignments 
(DFB, MFB, 

Hash) perform 
much worse

At low levels of skew, 
the hash strategy 

performs well because 
of uniform data

2 Postgress instances running: 
SELECT * FROM A,B WHERE A.id=B.id

System 1: Four 3.5 GHz Intel® Xeon® cores, 8 GB, ~150 GB Data.  
System 2: One 3.5 GHz Intel® Xeon® cores, 8 GB, ~75GB Data



BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

Migrator: 
moves data from 
engine to engine 
when the plan 

calls for it



Data Migrator Pipeline

45

Extract
- Read 
metadata

- Extract 
data

Transform & 
Migrate

- Logical    
transformation 

- Format 
conversion

- Compression
- Local / remote 

Load
- Write 
metadata  

- Load   
data

DBMS X DBMS Y

No disk materialization



Current approach: CSV migration

46

DBMS X DBMS Y

CSV format
1,”Adam”,6.00; 2,”Aaron”,7.00



1001 -> 0110 0110

0010101

DBMS YDBMS X

Our approach: binary migration

47

SINGLE Binary format: Y

1001

TRANSFORMBinary format X Binary format Y



Data Migration from PostgreSQL to SciDB

TRANSFORMATION is 3X, DIRECT is 4X faster than CSV 
migration

MIMIC II data - waveform(int, int, double)
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Data Migration from PostgreSQL to SciDB

TRANSFORMATION is 3X, DIRECT is 4X faster than CSV 
migration

MIMIC II data - waveform(int, int, double)
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• And while we won’t discuss it here, the team has also 

explored

– Parallel data migration 

– Data Compression

– Adaptive methods to respond dynamically to varying 

resource loads.



BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

How well does this work when we pull 
everything together into one system?



Prototype BigDAWG Overhead
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Third Party Names are the Property of their Owners.
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Big Data in the real world
Messy, heterogeneous, complex, streaming …

• Demographic 
• Caregiver 

notes
• Medical 

charts
• Lab test 

results
• Xray, MRI, 

etc.

• EKG traces
• Blood 

oxygen
• Blood 

pressure
• EEG traces

tables

documents

#images

Arrays

Arrays

Time Series

Time Series

tables

tables

• Consider patient data in an Intensive Care Unit (e.g. MIMIC 

II data set*)

# MIMC doesn’t include images.  We are talking to several groups to add an image database to our project 

* MIMIC:  Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/ 



BigDAWG: A Prototype Polystore System

Islands

• D4M (Associative Arrays)

• Myria (SQL+ Iteration)

• Streams

• Degenerate Islands

Application level tools

• Data Exploration

• Data Visualization

• Deep Analytics

• Streaming Analytics

• Extract-Transform-Load

Third Party Names are the Property of their Owners.



BigDAWG Streaming Island: S-Store
S-Store:

• A system for 
Streaming 
transactional 
semantics (ACID, 
order, exactly once)

• ETL: Extract + 
Transform as a 
streaming process … 
potentially much 
more efficient than 
current approaches!

Streaming
Data

BigDAWG Common Interface

Visualizations Applications

CastCast

SQLStreaming NewSQL

Relational ArrayS-Store

Clients

Relational Island Array Island

Shim Shim ShimShim

Streaming Island

Shim



Polystore Case Study:   MIMIC II Dataset

Data Explorer S-PI Overview Screen

Video Link

Tell Me Something 
Interesting

Text Analytics

Waveform Analytics

Streaming Analytics
(S-Store)

//localhost/Users/vijayg/devel/papers_and_talks/2015-division_seminar/BigDAWGSeminarVideoMP4.mp4
//localhost/Users/vi24487/devel/papers_and_talks/2016-hpec/presentations/smallDemoVideo.mov


• Goal: 

– Find patients with similar ECG 

time-series* 

• Procedure

– Perform Discrete Wavelet Transform 

of ECG 

–Generate wavelet coefficient histogram

– TF-IDF waveform coefficients (weight 

rare changes higher)

–Cluster and correlate against other ECGs

BigDAWG Polystore Waveform Analytics

• Show timings for individual 

components in two different 

DBMS scenarios

–Option 1: Do everything in one DB  

–Option 2: Use the DB most suited 

for each component

• Tough without coordinator SW

• Incur inter-database cast 

operation overhead

Top-K 
Clusters

Signal 

Processing

Discrete 

Wavelet 

Transform 

(DWT)

Coefficient Binning and Weighting

Frequency 
Coefficient 

Binning

Freq. 
Coefficient 

Outlier 
Weighting

Clustering

k-Nearest
Neighbors

1000s of 

Patient 

ECGs

Input Output

TF-IDF=Term Frequency-Inverse Document Frequency
* A novel method for the efficient retrieval of similar multiparameter physiologic time 
series using wavelet-based symbolic representations, Saeed & Mark, AMIA 2006



Polystore Analytics Performance

Better Worse
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Future work

• Open source release of BigDAWG Q1’2017

• Explore Features in Myria that can help BigDAWG



Myria: A stack for Big Data Analytics

RACO  Middleware

Translation, Optimization, Orchestration

Data Transfer with PipeGen

MyriaL and SQL

SciDB

Array

Spark

Relational
MyriaX

Relational

…

http://myria.cs.washington.edu

Myria is a Polystore system … emphasizes location independence

• Supports operations across multiple data stores

• Includes its own query execution engine MyriaX

• Occupies a hybrid relational-array Island in BigDAWG

Myria is a Cloud Service

• Deployed in the Amazon cloud

• Focus on efficiency and productivity

• Tested on applications from multiple scientific domains

Third Party Names are the Property of their Owners.



Future work

• Open source release of BigDAWG Q1’2017

• Explore Features in Myria that can help BigDAWG
– Cloud infrastructure

– Web front end

– Automatically generated casts with Mryia PipeGen

• Explore probabilistic data structures in the executor to further 
reduce data transfers.

• Explore additional datasets to stress-test the system
– Ocean Metagenomics work underway

• Add new Islands
– TileDB, Tuppleware (from Brown)

• Build on S-Store work to support ETL capabilities in 
BigDAWG.

Third Party Names are the Property of their Owners.



Conclusion

• The future belongs to polystore systems

– A single high level data management system that is composed of 

many individual storage management systems.

– Storage management matches the data for a better performance.

– Analytics embedded into the storage managers to keep computing near 

the data.

• BigDAWG is an effective Prototype to prove the concept.  

– There is a great deal of work needed to turn it into a general 

purpose tool for data scientists.

– Early results, however, are encouraging



October 10, 2016: 
Full workshop papers 
submission deadline

Research topics included in the workshop:
• New Computational Models for Big Data
• Languages/Models for integrating disparate data (e.g. graphs, 

arrays, relations)
• Query evaluation and optimization in federated or polystore 

systems
• High Performance/Parallel Computing Platforms for Big Data
• Integration of HPC and Big Data platforms
• Data Acquisition, Integration, Cleaning, and Best Practices
• Complex Big Data Applications in Science, Engineering, Medicine, 

Healthcare, Finance, Business, Transportation, Retailing, 
Telecommunication, Government and Defense applications

• Efficient data movement and scheduling, failures and recovery for 
analytics

Keynotes

Fatma Ozcan
of IBM

Luna Dong 
of Amazon

Workshop: Managing Heterogeneous Big Data

co-located with IEEE Big Data Conference

Details

December 5-8, 2016: 
Workshops Dates

November 15, 2016: 
Camera-ready of 
accepted papers 

Contact: 
Vijay Gadepally 
(vijayg@mit.edu) 

https://goo.gl/oLFR1F

mailto:vijayg@mit.edu
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