# ISTC

BIG DATA

productivity for complex, heterogeneous

big data applications

Tim Mattson, Intel labs

timothy.g.mattson@intel.com
Intel-Pl for the Big Data “Intel Science and Technology Center”

http://istc-bigdata.org/
With help from Vijay Gadepally (MIT LL), Zuohao She (Northwestern), & Adam Dziedzic (U Chicago)
2 p H I C
b I & B vr - I 5% ISTC
lhnvers1ty IN

State
BROWN uuuuuu B I G D A T A
Third Party Names are the property of their owners




| work at Intel ...

Moore's Law

1975 1980 1985 1990

@ Pantium”

¥ | Procgssor
BO4RE

[ JET TS
BO2B6

¢

* In 1965, Intel co-founder Gordon Moore predicted (from just 3 data
points!) that semiconductor density would double every 18 months.

— He was right! Over the last 50 years, transistor densities have
increased as he predicted.

Slide source: UCB CS 194 Fall'2010

Every Intel talk is required to have a Moore’s law slide and a ...
2



Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS 1S”. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only
on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to
any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804




Acknowledgements: The BigDAWG Teams

*  Overall BigDAWG vision and leadership

— Mike Stonebraker?, Sam Madden?, and Tim Mattson?
* System integration and Implementation leadership

— Vijay Gadepally?, Jennie Duggan® and Aaron Elmore®

*  BigDAWG Monitoring Framework
_  Peinan Chen? With special thanks for slides

- BigDAWG Data Migration and generous support from:
 Vijay Gadepally

« Zuohao She

« Adam Dziedzic

— Adam Dziedzic®, Aaron EImore®
* BigDAWG Executor

— Ankush Gupta?
* BigDAWG Query Optimization

— Zuohao She?, Surabhi Ravishankar>, and Jennie Duggan®
* S-Store

— John Meehan3, S. Zdonik3, Shaobo Tian3, Yulong Tian3, Nesime Tatbul!, A. EImore®, Adam Dziedzic®
* Myria

— Magdalena Balazinska* and Bill Howe*

5
Carnegie 4
%ﬂlﬂ% . ty m Port]%d @
Versl h
o

Third Party Names are the property of their owners

H .2

@ 1]

#ISTC

BIG DATA




Three Eras of Database Technology

([ SQLEra ] [ NoSQLEra | [ NewSQL Era | [ Future |
Common Rapid ingest Fast analytics
interface for internet inside
search databases

Google < Nest'Lm'

BigTable - Cattell
Chang et al ‘
(2006) (2010)

1990 Relational (SQL) -

1980

1970

ORACLE  PostgreSQL 8CccurmuLo QScil )2 |0e60600e0)|

SQL = Structured Query Language

NoSQL = Not only SQL
Source: The BigDAWG Polystore System and
Architecture, HPEC'2016, Vijay Gadepally

Third party names are the property of their owners



Big Data in the Real World

« Consider patient data in an Intensive Care Unit (e.g. MIMIC

|| data set*)
«  EKG traces @ »  Demographic
» Blood . CaEeglver
oxygen notes
 Blood 4 « Medical
pressure </ charts
+  EEG traces * Lab test
results
« Xray, MRI,
etc.

The challenge ... apply predictive analytics across all data ... so we
can show up to restart a heart before it stops beating!!!

* MIMIC: Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/



Big Data in the Real World

Messy, heterogeneous, complex, streaming ...

« Consider patient data in an Intensive Care Unit (e.g. MIMIC
|| data set*)

Arrays

Time Series

Time Series

Arrays

EKG traces @

Blood
oxygen
Blood

L
7
pressure </
EEG traces

Demographic |tables

Caregiver
notes
Medical
charts

Lab test
results
Xray, MRI,
etc.

documents

tables

tables

#images

Time series and tabular data are stored in a DBMS.
Other data? Flat files

* MIMIC: Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/

# MIMC doesn't include images. We are talking to several groups to add an image database to our project



Analysis of published MIMICII papers

L))
o
o, . .
210001 - Data in databases is
3-6 100| @ databases* used; Qatg |n.f|Ies is not
g x —Data in files Is nearly
2 10]/7 equivalent to deleting the
2§, At ® files* data
1000x "
GB B PB

Data Volume

We must bring the power of
data bases to all data

*Based on PhysioNet

MIMIC2 IC t
Source: Vijay Gadepally of MIT Lincoln labs U data



So we should cram all the data into one DBMS?
NO!!I One Size Does Not Fit All*

Typical DB Operations

100000 Wo[se

= = POsStGRES - Count Entries
=« SciDB - Count Entries

10000 - _ _

© - P0OStGRES - Discrete Entries

c

8 =S CIDB - Discrete Entries

@ 1000 -

0

é 100 -

c

O

=

= 10 !

CIEJ 103 104 10° 100 107 Better

= Number of Database Entries

Count and Find Operations
* SQL database (PostgreSQL) better for some operations than Array database (SciDB)

*Stonebraker, Michael, and Ugur Cetintemel. "" One size fits all": an idea whose time has come and
gone." 21st International Conference on Data Engineering (ICDE'05). IEEE, 2005.

Third Party Names are the property of their owners



A more extreme “one size does not fit all” example:
TileDB a new array data storage manager optimized for Sparse Arrays

Logical representation Physical representation

attribute values coordinates Files

(a, a,, ..., a,) N T

cell
y
empty cell
X tile :

dimensions Tile: Atomic unit of processing

Manage array storage as tiles of different shape/size in the
index space, but with ~equal number of non-empty cells
Stavros Papadopoulos of Intel created TileDB

Open Source release: https://github.com/Intel-HLS/GenomicsDB



TileDB Is ideal for storing Genomics Data

* Represent variation of a sample from a reference Genome
(Genome Variant Call format or gvVCF)

« Store as a sparse 2D array in TileDB ... store a non-empty cell
for every END endpoint of the gVCF ranges

Binary files (one per attribute

Positions (~3 Billion)

START " coords START
\\ (chromosome-+position) (camplelD, END)
Dl 3 Non-empty cell
Samples A gVCF range (only END of gVCF range)
(gVCF) .
~100K and
growing

The cells are sorted In
column-major order, and
compressed

Third Party Names are the property of their owners



One Size Does Not Fit All

GenomicsDB/TileDB combine gVCF operation + median (5K random positions)

180
Worse
160
A
140
120
100

-#-BCF query

Merge +median time (in seconds)

%0 TileDB
==1lle uer

60 query
40
20 y

—e 9.16
0 < EEMBETREREIE9 ' Better

0 200 400 600 800 1000 1200
# Samples

BCF refers to the Broad processing pipeline highly optimized by Intel.

This is what happens when the data-store matches the data

Intel® Xeon® E5 2697 v2 CPU, 12 cores, dual socket, 128 GB RAM, CentO0S6.6, Western Digital 4 TB WD4000F9YZ-0 as a ZFS RAIDO pool.
Third Party Names are the property of their owners



One Size Does Not Fit All

GenomicsDB/TileDB combine gVCF operation + median (5K random positions)

180
160

Worse

S = S
o N b
o O O

-=-BCF query

an time (in seconds)
8

==TileDB querv

From Eric Banks ot the Broad (April 2016) speaking of TileDB....

“The time it now takes to perform the variant discovery
process went from eight days to 18 hours,” Banks said.
“However, that's with 100 whole genomes. We routinely
process projects with thousands of samples, so that speedup

f itself is truly transformative. ...

Tt http://genomicinfo.broadinstitute.org/acton/media/13431/broad-intel-collaboration
mem—ﬁmmwrm

Intel® Xeon® E5 2697 v2 CPU, 12 cores, dual socket, 128 GB RAM, Cent0S6.6, Western Digital 4 TB WD4000F9YZ-0 as a ZFS RAIDO pool.
Third Party Names are the property of their owners



Three Eras of database technology

([ SQLEra ] [ NoSQLEra | [ NewSQL Era | | Future |
Common Rapid ingest Fast analytics
interface for internet inside
search databases
Applications
Google - NewSQL using
ol oo vl
(00sy 1 covel storage
engines that

1980 1990 EEUCHENE{e]Rp match the
needs of the

data.

ORACLE  PostgreSQL 8CCUMMULO PScil 2 |e000e000060

SQL = Structured Query Language
NoSQL = Not only SQL

Source: The BigDAWG Polystore System and

Third party names are the property of their owners Architecture, HPEC'2016, Vijay Gadepally



How do we deal with multiple data bases?

* Programmer productivity requires Data Virtualization.

— A data access interface that hides the technical details of stored data,
such as location, storage structure, API, access language, and storage
technology.

 Typical mechanism for Data Virtualization? ... Data Federation

— A form of data virtualization where the data stored in a heterogeneous
set of autonomous data stores is made accessible to data consumers as
one integrated data store using on-demand data integration.

Data Federation Interface

b _____ I
I | |
;QL N\ewSQL FoSQL

[ Relational } [ Array } [ Key-Value }
15




How do we deal with multiple data bases?

« Data Federation ... in practice
— The single interface imposes a single data model
— The DBMS are autonomous ... not integrated!

* Therefore, disparate data models in the DBMS are hard to
support and the federated DBMS are typically based on a single
(e.g. SQL) data model ....

— forces a “One Size Fits All” perspective.

Data Federation Interface

I o
I | }
;QL S\QL §2L

[ Relational } [ Relational } [ Key-value }
16




Polystore: a new twist on Data Federation

* Programmer productivity requires data virtualization, efficient
execution requires benefits of queries that exploit features of a
particular data-store

 Polystore:

— A form of data virtualization where the data stored in a heterogeneous set
of inteqrated data stores is exposed through a common interface but the
features of the individual data-stores are visible.

Polystore Interface

I 7 ' ]

~—— ~— -

SQL NewSQL NoSQL
[ Relational } [ Array } [ Key-Value }

17




Polystore: a new twist on Data Federation

» Polystore Design forces.

— Location independence: A query does not care which data-store in the
polystore system it will target. A huge convenience for programmers.

— Semantic Completeness: Any query natively supported by a data-store
in the Polystore system can be expressed.
* The challenge in designing a Polystore system is to balance
“location independence” and “Semantic Completeness” without
compromising efficient execution.

Polystore Interface

I 7 ' ]

~—— . = —~——

SQL NewSQL NoSQL
[ Relational } [ Array } [ Key-Value }

18




Three Eras of database technology

([ SQLEra ] [ NoSQLEra | [ NewSQL Era | | Future |
Common Rapid ingest Fast analytics Polystore:
interface for internet inside matching data

search databases to the storage
engine

Google

: NewSQL
BigTable - C::te?l
Chang et al-
- (2010)

~ (2006)

1970 1980 1990 Relational (SQL)

~ Duggan -
- et.al. =
- (2015)

ORACLE  PostgreSQL 8CCUMMULO PScil 2 |e000e000060

SQL = Structured Query Language
NoSQL = Not only SQL

Source: The BigDAWG Polystore System and

Third party names are the property of their owners Architecture, HPEC'2016, Vijay Gadepally



BIigDAWG: A Prototype Polystore System

* BigDAWG
— Polystore: match data to
the storage engine Visualizations Clients Applications
° BlgDAWG Islands BigDAWG Common Interface
— A data model + query
operations Relational Island Array Island Island ...
— One or more storage * \ * *
ehgines Shlm Shim Sh|m Shlm

— “Shim” connects a v
BigDAWG query to a

data engine
Cast Cast
— “Cast” migrates data

from one engine to SQL NewSQL N05QL
another [ Relational } [ Array ] [ Key-Value }




BIigDAWG: A Prototype Polystore System

- BigDAWG

— Polystore: match data to
the storage engine

When an Island has a
single storage engine,
the full functionality of

- BigDAWG Islands that engine is exposed. \ rfacf\

Applications

- A data_model + query We call this a
operations “degenerate Island” 7( Island ... \
— One or more storage ! * \
engines Shim

— “Shim” connects a
BigDAWG query to a

data engine
Cast
— “Cast” migrates data . /
from one engine to SQL NewSQL NoSQL

another [ Relational } [ Array } Key-VaIL%}




BigDAWG Middleware

Visualizations Clients Applications
Complete plan
| Query Optimizer Executor || Output
Original | | Perf. ; Data Transfer
Query Info Request
Monitor |+ Migrator
Perf. Info
Relational Island Array Island Island ...
Sh|m Shlm Shim

Sh|m

st Sl ét



BigDAWG Middleware

Optimizer: Parses the query and creates
a set of viable query plan trees with
possible engines for each subquery  pts

Executor: figures out how to best
join the collections of objects and
then executes the query

Complete plan
Query Optimizer

Experim.

Monitor: uses
existing
performance
information to
determine the
tree with the

each subquery

best engine for

Executor

Output >

Original | | Perf. Data Transfer
Query Info Request
Monitor |+ Migrator
Perf. Info
onal Island Array Island Island |

I: Cast

Cast

Fe—>3

Migrator:
moves data from
engine to engine

when the plan
calls for it




BigDAWG Middleware

Visualizations Clients Applications
Complete plan
| Query Optimizer Executor || Output
Original | | Perf. ; Data Transfer
Query Info Request
Monitor |+ Migrator
Perf. Info
Relational Island Array Island Island ...
Sh|m Shlm Shim

Sh|m

st Sl ét



A Big DAWG Query

bdarray(
filter(

bdcast(

bdrel( select bodc_sta, time_stp, interp_sal
from sampledata.main)

, Intrp_salinity
, '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]’
, array)

, Interp_sal < 35))

25



A Big DAWG Query

Using the array island, issue the

bdarray( island’s filter operation
filt _ _ |
sl filter([source_array], [logical_expression])

bdcast(
bdrel( select bodc_sta, time_stp, interp_sal
from sampledata.main)
, Intrp_salinity
, '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]’

, array)
@_sal < 35))
Result is an array with rows for which

interp_sal is less than 35

26



A Big DAWG Query

Create the array for the filter op by
casting the table formed by this
subquery from the relational island

bdarray( to the array island

filter
dcast(
bdrel( select bodc_sta, time_stp, interp_sal
from sampledata.main)
, Intrp_salinity
, '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]’

, Interp_sal < 35))

Bdcast ([source_query], name, [Dest_schema_parameters], [target])




A Big DAWG Query

The array created is named “intrp_salinity”. It has three
attributes (bodc_sta, time_stp, and interp_sal) with
bdarray( unbounded number of rows (i=0:*) broken down into

filter( chunks of size 1000 with O overlap

bdcast(
bdrel( select bodc_sta, time_stp, interp_sal
from sampledata.main)

, '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]’

, Interp_sal < 35))

28



BigDAWG Middleware

Optimizer: Parses the query and creates
a set of viable query plan trees with

possible engines for each subquery  pts

Applications

\ Complete plan

Query Optimizer
Original 7e4 R,

Executor || Output >

Data Transfer

Query Info Request
Monitor |+ Migrator
Perf. Info
Relational Island Array Island Island ...
Sh|m Sh|m Shlm Shim
i Cast ; Cast i




Optimizer: turns queries into a logical plan

« The Optimizer generates Logical plans corresponding to
the input query.
— Works with the “monitor” to track historic plans and select the best
plan.

* The Optimizer uses planners native to an Island.

« What about cross Island Optimization?
— We need to build these ourselves

30



Optimization: Finding the right Island to run a query

Path-finding with known ends*

1000 * 200,000 nodes and
approx. 4 million edges

%2

o 197.698

o

o 100

wn

k=

=

g= 10

= 4.655

o

)} 1 I

(i .
Neo4J Postgres SciDB

Engine used for each experiment

Can we translate queries between Islands and then run on
the Island that gives us the best performance?

SciDB array database from . paradigm Neo4 graph database fror e'g,!neoqj

Third Party Names are the property of their owners



Goal: Translate queries between islands

« Approach:
— Build a translation framework
— Equivalence rules mapping between Islands

 Example equivalence rule ...

* {name: “SQL to AFL matrix multiplication”,
source : SQL, destination : AFL,
{matrix_1 : table,
original_attribute:
{row : integer, col : integer, value : double precision}},
destination_ attribute:
{row : dimension, col : dimension, value : double}
{matrix_2:...}
source_query: “SELECT m1.row, m2.col, ...”,
destination_query: “spgemm(matrix_1, matrix_2)"}

Rule name
Islands

Data
Structure
mappings

Query
mappings

32



Using Equivalence Rules for translation

SELECT SUM JOIN

: : Pattern GROUP BY | Faster, Order irrelevant
AFL: multiply(a, b) Matching SELECT SUM JOIN

GROUP BY ORDER BY

>’ Itipl
multi
=

- i
-

\ Language Data Structure Type Query /

multiply




The Semantic Lattice

« Organize collections of equivalence rules (both generated

and user provided) into a semantic lattice to reason over
sets of options

Translate more
general queries
Optimizer constructed nodes @ @ @

Existing polystore islands

Relational
Island

Translate more

_ . Graph Engine 4 Engine 1 Engine 2 Engine 3
expressive queries



BigDAWG Middleware

Visualizations

Clients

Applications

Query )

Monitor: uses
existing
performance
information to
determine the
tree with the

each subquery

best engine for

Complete plan
Optimizer +| Executor || Output
Original | | Perf. ERPRIN Data Transfer
Query Info Perf. Info Request
Monitor |+ Migrator
Perf. Info
onal Island Array Island Island ...
:hlm Sh|m Shlm Shim
i Cast ; Cast i




Blg DAWG Monitor: find best execution plan for a Query

Input Query, Q

Monitor

ID = signature(Q)

/ Mode? \

Production fnode

\4

Do we have anything

™~

Training mode

A 4

Generate reasonable
plan/engine combinations

\ 4

~

matching(ID)?
no es
Return Return that
arbitrary plan/engine
plan/engine combination
combination

Save plan/engine combs with:
« the query
» its signature, ID

< \
Postgress

database of past
queries

Run (when sys load is low)
and update database:

« the fastest Plan for ID,
* Runtime

« Date run




Production mode gains

Query No. | Training Mode | Production Mode | Without Monitor
1 826 ms 265 ms 281 ms

2 882 ms 190 ms 346 ms

3 62539 ms 20559 ms 20990 ms
4 491 ms 160 ms 166 ms

5 6592 ms 1977 ms 2308 ms
6 24294 ms 6146 ms 9074 ms
7 28165 ms 7648 ms 10259 ms
8 19073 ms 4496 ms 7289 ms
9 15806 ms 4652 ms 5577 ms
10 78487 ms 23496 ms 27496 ms

» 10 different queries with two possible query trees tested

« Training mode — each query run through two possible query trees
» Production mode — executor runs best query determined by training mode

» Best case: Production mode is ~60% of time running without Monitor (randomly

select 1 of the 2 possible query trees)

37



Production mode gains

Query No. | Training Mode | Production Mode | Without Monitor
1 826 ms 265 ms 281 ms

2 882 ms 190 ms 346 ms

3 62539 ms 20559 ms 20990 ms

This is all very preliminary ... we know there is much left to
explore before we have a production worthy monitor.

But early results are promising.

Future work:

 Different Signature definitions to improve matching and
reduce searching times.

« Explore a broader range of queries and engines

« Machine learning to predict “best” plans for new queries
even when matching queries aren’t available.

—~

. 0
select 1 of the 2 possible query trees)

38



BigDAWG Middleware

Visualizations

Clients

Executor: figures out how to best
join the collections of objects and

then executes the query

Query ) | Optimizer

Complete plan /

| Executor m

Original | | Perf. ata Transfer
Query Info Request
Monitor |+ Migrator
Perf. Info
Relational Island Array Island Island ...
Sh|m Shlm Shim

Sh|m

El Sl

Cast i




The BIgDAWG Executor

* The executor receives a Logical Query Plan from the
optimizer
— Logical plan: an execution graph ... nodes with tasks and
dependencies

« Basic nodes that map onto a single island
— Issue executions on respective islands
— Execute in parallel with a dataflow pattern

« Complex executions spanning Islands are more involved.

40



The BIgDAWG Executor: complex queries

Consider the Shuffle join: A multi-engine join where query predicates are
“shuffled” between Islands

Find distribution Migrate join units Outputs of
of join attributes to execution engines combined
to use in load engines as on the single
balancing needed destination engine

Join-Unit Join

il Colocation

Join-Unit
Examination fadl Assignment

Result
Union

adll Comparison [had

Schedule join Carry out the join
units for operation of join
execution units

join-units: small non-overlapping ranges of tuples (rows in PostgreSQL, cells in
SciDB, key-value pairs in Accumulo, etc.) participating in the join.

Each join-unit consists of a fraction of the full query predicate, and tuples are
mapped to a join-unit based on the value of their join attribute.

41



Join-Unit assignments
* The challenge is to distribute join-units (i.e. “computations”)
among engines to maximize performance.

» Several different strategies were considered

— DFB: Move all tables to the final destination engine in the plan.
— MFB: Pick the engine that requires movement of smallest tables
— Hash: Randomly assigns tuples to participating engines

— MBH: Assign-join unit to engine that minimizes tuple movement
— Tabu: A local optimization algorithm that improves on the MBH result

Skew
agnostic

« Experiment

— Generate data sets with known skew from a Zipf (power law)
distribution ranging from uniform (a=0) to heavily skewed (a=2)

— Considered full table scan vs sampling for understanding skew ..
sampling was less expensive and resulted in good distributions.

Skew: a measure of how uneven the distribution of data is in a Data Base.

DFB: Destination Full Broadcast, MFB: Minimal Full Broadcast, = MBH: Minimum bandwidth Heuristic 42



Shuffle Join results:
Different load balancing algorithms and data-skews

B examination Eassignment B gcefocation DcompMn
100 As skew

90 Increases,
skew-agnostic

At low levels of ske

80 :
o | assignments
= 70
= (DFB, MFB,
‘g 60 Hash) perform
S 5o much worse
S
0O 40
=
L 30
o
20
10
2
=
ZipfianAlpha 2
2 Postgress instances running: MBH and Tabu consider
SELECT * FROM A,B WHERE A.id=B.id skew to produce a more

balanced load ... hence

. ® ® ~
System 1: Four 3.5 GHz Intel® Xeon® cores, 8 GB, ~150 GB Data. Outperform other methods

System 2: One 3.5 GHz Intel® Xeon® cores, 8 GB, ~75GB Data




BigDAWG Middleware

Visualizations

Clients

Applications

Original | | Perf.
Query Info

Complete plan
Query Optimizer

Request

E

Monitor

/Migr-ator

- Executor || Output >

Data Transfer

Perf. Info \
Relational Island Array Island Island |
Sh|m Shlm Shim

Sh|m

; Cast

sl

Migrator:
moves data from
engine to engine

when the plan
calls for it

Cast ;




Data Migrator Pipeline

/ Transform &
. Mlgrate Load
Read - Logical | - Write
B ot transformation metadata T B
i1 - - Format. - Load PR
- 1 . conversion data _
~— - Compression —
- Local / remote
DBMS X - DBMS Y

No disk materialization

45



Current approach: CSV migration

CSV format
1,"”Adam”,6.00; 2,"Aaron”,7.00

L) s

—

DBMS X DBMS Y

46



Our approach: binary migration

Binary format X TRANSFORM Binary format Y
PRl 00 ) 100150110  J oio [N

SINGLE Binary format: Y

:iﬁ E> 0010101 E> :'.ii
N

S

DBMS X DBMS Y

47



Data Migration from PostgreSQL to SciDB

2500 CSV migration MIMIC II data - Waveform(/nt, //7[} dOUb/@)
)
@ 2000 =e=Dinary migration with
O TRANSFORMATION
GE) 1500 -e=DIRECT binary migration
=
— 1000
O
o
® 500
=2
= 0

0 5 10 15 20 25 30

Data size (GB)

TRANSFORMATION is 3X, DIRECT is 4X faster than CSV
migration 48



Data Migration from PostgreSQL to SciDB

2500 CSV migration MIMIC II data - waveform(int, int, double)

2000 =e=Dinary migration with
TRANSFORMATION

1500 ==DIRECT binary migration

* And while we won't discuss it here, the team has also
explored
— Parallel data migration
— Data Compression

— Adaptive methods to respond dynamically to varying
resource loads. 30

Migration Time (sec)

TRANSFORMATION is 3X, DIRECT is 4X faster than CSV
migration 49



BigDAWG Middleware

How well does this work when we pull
everything together into one system?

Query ) | Optimizer

Complete plan

- Executor || Output >

Original | | Perf. ERPRIN Data Transfer
Query Info Request
Monitor |+ Migrator
Perf. Info
Relational Island Array Island Island ...
Sh|m Shim Shim

Shim

i Cast

A" 4

v
«—>3




Prototype BIigDAWG Overhead

Overhead Incurred When Using BigDAWG
For Common Database Queries

2000
1800 m Overhead Incurred (ms)
1600
g 1400 = Query without BigDAWG (ms)
2]
e B
c
b} _ |y —_—
< 1000 - Minimal
= 800 - Overhead
: -
edn I
v B
N
0 _
[Count [Average [Average [Btandard [Distinct
(Postgres) (Postgres) (SciDB) Deviation Count (SciDB)  Values
(SciDB) (SciDB)

Third Party Names are the Property of their Owners.



Big Data in the real world

Messy, heterogeneous, complex, streaming ...

« Consider patient data in an Intensive Care Unit (e.g. MIMIC
|| data set*)

Arrays

Time Series

Time Series

Arrays

EKG traces @T

Blood
oxygen
Blood

pressure W
EEG traces

Demographic |tables

Caregiver
notes
Medical
charts

Lab test
results
Xray, MRI,
etc.

documents

tables

tables

#images

* MIMIC: Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/

# MIMC doesn't include images. We are talking to several groups to add an image database to our project

52



BIigDAWG: A Prototype Polystore System

Application level tools

« Data Exploration

« Data Visualization

* Deep Analytics

« Streaming Analytics

« Extract-Transform-Load

Islands
« D4M (Associative Arrays)

* Myria (SQL+ Iteration)
« Streams
« Degenerate Islands

% Visualizations Clients Applications
BigDAWG Common Interface

7 Relational Island Array Island Island ...

Shim Shim Shim Shim

R N 4

QSciDB

gCccurmruLo

4 Cast Cast 4

SQL NewSQL NoSQL

(’) Myri 3 [ Relational } [ Array ] [ Key-Value }

Third Party Names are the Property of their Owners.



BigDAWG Streaming Island: S-Store

S-Store:
« A system for
Streaming

transactional
semantics (ACID,

Visualizations Clients Applications

order, exactly once)
BigDAWG Common Interface

« ETL: Extract +

Transform as a Streaming Island Relational Island Array Island
streaming process ... * , * \ *
potentially much . Shlm Sh i

more efficient than 5 im | Shim Sh|m

current approaches!

Streaming
Data Cast Cast

Streamlng SQL NewSQL

[ S-Store } [Relational} [ Array }

Ay




Polystore Case Study: MIMIC |l Dataset

Rendered Waveform
Data Explorer ——s EEEE I |
] | |
s ! I
:; "1 T/P\q——',"_llz‘—’f\"" - hossital_axpire_g ve. AVG(icustay_los)
Tell Me Something = . pee
Interesting i
\\\ 2,000
Text Analytics o I B eRE —
Waveform Analytics — A1)
Mr. Birdy Bed 100a
Temperature 36.5
Blood Pressure 130/90
Streaming Analytics Heart Rate 80

(S-Store)



//localhost/Users/vijayg/devel/papers_and_talks/2015-division_seminar/BigDAWGSeminarVideoMP4.mp4
//localhost/Users/vi24487/devel/papers_and_talks/2016-hpec/presentations/smallDemoVideo.mov

BIgDAWG Polystore Waveform Analytics

Input 4 Signal ) fCoefficient Binning and Weighting\ /Clustering\ Output
Processing
Discrete Freq.
ORI oo BB Conicn M cocricin BB oo B 1op
atien Transform B mg Outlier Neighbors Clusters
ECGs | (DWT) ‘ 9 Weighting
* Goal: .+ Show timings for individual
— Find patients with similar ECG  components in two different
time-series* . DBMS scenarios
* Procedure - —Option 1: Do everything in one DB
— Perform Discrete Wavelet Transform
of ECG - — Option 2: Use the DB most suited

— Generate wavelet coefficient histogram for each component

— TF-IDF waveform coefficients (weight * Tough without coordinator SW
rare changes higher) i « Incur inter-database cast

— Cluster and correlate against other ECGs operation overhead

* A novel method for the efficient retrieval of similar multiparameter physiologic time _ _ _
serfes using wavelet-based symbolic representations, Saeed & Mark, AMIA 2006 TF-IDF=Term Frequency-Inverse Document Frequency



Polystore Analytics Performance

Time taken to perform analytic using different technologies

Technology Used

/

E

W2

< Dis¢

nTert
Dooc

7 K-N

crete Wavelet Transform

m Frequency-Inverse
ument Frequency

earest Neighbors

seoe NI
Myria §§\\\\§
I
ot NI
0

50

-

100 150 200
Time Taken (Seconds)

250

Better

—

300

Worse

Third Party Names are the Property of their Owners.



Future work

« Open source release of BigDAWG Q12017
« Explore Features in Myria that can help BigDAWG



Myria: A stack for Big Data Analytics @ Myria

Myria is a Polystore system ... emphasizes location independence
« Supports operations across multiple data stores

 Includes its own query execution engine MyriaX

* Occupies a hybrid relational-array Island in BigDAWG

Myrial and SQL

RACO Middleware
Translation, Optimization, Orchestration

MyriaX ] Spark ] ] SciDB
Relational Relational Array
Data Transfer with PipeGen

Myria is a Cloud Service

* Deployed in the Amazon cloud

» Focus on efficiency and productivity

» Tested on applications from multiple scientific domains

http://myl’ia_CS_WaShington_edu Third Party Names are the Property of their Owners.



Future work

Open source release of BigDAWG Q1'2017

Explore Features in Myria that can help BIgDAWG
— Cloud infrastructure
— Web front end
— Automatically generated casts with Mryia PipeGen

Explore probabilistic data structures in the executor to further
reduce data transfers.

Explore additional datasets to stress-test the system
— Ocean Metagenomics work underway

Add new Islands
— TileDB, Tuppleware (from Brown)

Build on S-Store work to support ETL capabilities in
BigDAWG.

Third Party Names are the Property of their Owners.



Conclusion

* The future belongs to polystore systems

— A single high level data management system that is composed of
many individual storage management systems.
— Storage management matches the data for a better performance.
— Analytics embedded into the storage managers to keep computing near
the data.

* BIgDAWG Is an effective Prototype to prove the concept.

— There is a great deal of work needed to turn it into a general
purpose tool for data scientists.

— Early results, however, are encouraging



Workshop;,Mana.gi_ng Heterogeneous Big Data

|

Research topics included in the workshop:

Keynotes

New Computational Models for Big Data

Languages/Models for integrating disparate data (e.g. graphs,
arrays, relations)

Query evaluation and optimization in federated or polystore
Systems _ _ Luna Dong
High Performance/Parallel Computing Platforms for Big Data of Amazon
Integration of HPC and Big Data platforms

Data Acquisition, Integration, Cleaning, and Best Practices
Complex Big Data Applications in Science, Engineering, Medicine,
Healthcare, Finance, Business, Transportation, Retailing,
Telecommunication, Government and Defense applications
Efficient data movement and scheduling, failures and recovery for
analytics

[k

Fatma Ozcan

of IBM
Details
October 10, 2016: November 15, 2016:  pecember 5-8, 2016:  Contact:
Full workshop papers  Camera-ready of Workshops Dates Vijay Gadepally

submission deadline accepted papers (vijayg@mit.edu)



mailto:vijayg@mit.edu

References (All in the HPEC’2016 Proceedings)

The BigDAWG Polystore System and Architecture Vijay Gadepally, Peinan
Chen (MIT), Jennie Duggan (Northwestern University), Aaron Elmore (University
of Chicago), Brandon Haynes (University of Washington), Jeremy Kepner,
Samuel Madden (MIT), Tim Mattson (Intel), Michael Stonebraker (MIT)

BigDAWG Polystore Query Optimization Through Semantic Equivalences
Zuohao She, Surabhi Ravishankar, Jennie Duggan (Northwestern University)

The BigDawqg Monitoring Framework Peinan Chen, Vijay Gadepally, Michael
Stonebraker (MIT)

Cross-Engine Query Execution in Federated Database Systems Ankush M.
Gupta, Vijay Gadepally, Michael Stonebraker (MIT)

Data Transformation and Migration in Polystores Adam Dziedzic, Aaron J.
Elmore (University of Chicago), Michael Stonebraker (MIT)

Integrating Real-Time and Batch Processing in a Polystore John Meehan,
Stan Zdonik Shaobo Tian, Yulong Tian (Brown University), Nesime Tatbul (Intel),

Adam Dziedzic, Aaron Elmore (University of Chicaqo)



file://psf/Home/Documents/Work/confs-paper-book-rev-cache/HPEC/HPECProc2016/index_htm_files/R-PID4408159.pdf
file://psf/Home/Documents/Work/confs-paper-book-rev-cache/HPEC/HPECProc2016/index_htm_files/R-PID4407447.pdf
file://psf/Home/Documents/Work/confs-paper-book-rev-cache/HPEC/HPECProc2016/index_htm_files/R-s-store-slash.pdf
file://psf/Home/Documents/Work/confs-paper-book-rev-cache/HPEC/HPECProc2016/index_htm_files/R-PID4408167.pdf
file://psf/Home/Documents/Work/confs-paper-book-rev-cache/HPEC/HPECProc2016/index_htm_files/R-PID4350489.pdf
file://psf/Home/Documents/Work/confs-paper-book-rev-cache/HPEC/HPECProc2016/index_htm_files/R-s-store-slash.pdf

