
BigDAWG Polystore: programmer
productivity for complex, heterogeneous

big data applications

Tim Mattson, Intel labs
timothy.g.mattson@intel.com

Intel-PI for the Big Data “Intel Science and Technology Center”

With help from Vijay Gadepally (MIT LL), Zuohao She (Northwestern), & Adam Dziedzic (U Chicago)

Third Party Names are the property of their owners

http://istc-bigdata.org/

I work at Intel …

2

Every Intel talk is required to have a Moore’s law slide and a …

Legal Disclaimer & Optimization Notice

• INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR

IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS

GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL

DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR

PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT.

• Software and workloads used in performance tests may have been optimized for performance only

on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured

using specific computer systems, components, software, operations and functions. Any change to

any of those factors may cause the results to vary. You should consult other information and

performance tests to assist you in fully evaluating your contemplated purchases, including the

performance of that product when combined with other products.

• Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core,

VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Acknowledgements: The BigDAWG Teams

• Overall BigDAWG vision and leadership

– Mike Stonebraker2, Sam Madden2, and Tim Mattson1

• System integration and Implementation leadership

– Vijay Gadepally2, Jennie Duggan5 and Aaron Elmore6

• BigDAWG Monitoring Framework

– Peinan Chen2

• BigDAWG Data Migration

– Adam Dziedzic6, Aaron Elmore6

• BigDAWG Executor

– Ankush Gupta2

• BigDAWG Query Optimization

– Zuohao She5, Surabhi Ravishankar5, and Jennie Duggan5

• S-Store

– John Meehan3, S. Zdonik3, Shaobo Tian3, Yulong Tian3, Nesime Tatbul1, A. Elmore6, Adam Dziedzic6

• Myria

– Magdalena Balazinska4 and Bill Howe4

With special thanks for slides
and generous support from:
• Vijay Gadepally
• Zuohao She
• Adam Dziedzic

1 32 4
5 6

Third Party Names are the property of their owners

Three Eras of Database Technology

NoSQL

Relational (SQL)2006

NewSQL

1970

Relational
Model

E.F. Codd
(1970)

1980 1990 2010

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach

Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{ fay,jeff,sanjay,wilsonh,kerr,m3b,tushar,fikes,gruber} @google.com

Google, Inc.

Abstract

Bigtable is a distributed storage system for managing

structured data that is designed to scale to a very large

size: petabytes of data across thousands of commodity

servers. Many projects at Google store data in Bigtable,

including web indexing, Google Earth, and Google Fi-

nance. These applications place very different demands

on Bigtable, both in terms of data size (from URLs to

web pagesto satellite imagery) and latency requirements

(frombackendbulk processing to real-timedataserving).

Despite these varied demands, Bigtable has successfully

provided a flexible, high-performancesolution for all of

theseGoogleproducts. In thispaper wedescribethesim-

pledatamodel provided by Bigtable, which givesclients

dynamic control over data layout and format, and we de-

scribe thedesign and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,

implemented, and deployed a distributed storage system

for managing structured data at Google called Bigtable.

Bigtable is designed to reliably scale to petabytes of

data and thousands of machines. Bigtable has achieved

several goals: wide applicability, scalability, high per-

formance, and high availability. Bigtable is used by

more than sixty Google products and projects, includ-

ing Google Analytics, Google Finance, Orkut, Person-

alized Search, Writely, and Google Earth. These prod-

ucts use Bigtable for a variety of demanding workloads,

which range from throughput-oriented batch-processing

jobs to latency-sensitive serving of data to end users.

TheBigtableclustersused by theseproductsspan awide

range of configurations, from a handful to thousands of

servers, and storeup to several hundred terabytesof data.

In many ways, Bigtableresemblesadatabase: it shares

many implementation strategies with databases. Paral-

lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable

providesadifferent interfacethansuchsystems. Bigtable

does not support a full relational data model; instead, it

provides clients with a simple data model that supports

dynamic control over data layout and format, and al-

lows clients to reason about the locality propertiesof the

data represented in the underlying storage. Data is in-

dexed using row and column names that can bearbitrary

strings. Bigtablealso treatsdataasuninterpreted strings,

although clients often serialize various forms of struc-

tured and semi-structured data into these strings. Clients

can control the locality of their data through careful

choices in their schemas. Finally, Bigtable schema pa-

rameters let clientsdynamically control whether to serve

dataout of memory or from disk.

Section 2 describes the datamodel in moredetail, and

Section 3 provides an overview of the client API. Sec-

tion 4 briefly describestheunderlyingGoogleinfrastruc-

ture on which Bigtable depends. Section 5 describes the

fundamentals of the Bigtable implementation, and Sec-

tion 6 describes some of the refinements that we made

to improve Bigtable’s performance. Section 7 provides

measurements of Bigtable’s performance. We describe

several examples of how Bigtable is used at Google

in Section 8, and discuss some lessons we learned in

designing and supporting Bigtable in Section 9. Fi-

nally, Section 10 describes related work, and Section 11

presentsour conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-

dimensional sorted map. The map is indexed by a row

key, column key, and a timestamp; each value in themap

is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string

To appear in OSDI 2006 1

G R
 A
 P
 H
 U
 L
 O

Google
BigTable

Chang et al
(2006)

NewSQL
Cattell

(2010)

SQL Era NoSQL Era NewSQL Era Future

?

Fast analytics
inside

databases

Common
interface

Rapid ingest
for internet

search

SQL = Structured Query Language
NoSQL = Not only SQL

Third party names are the property of their owners

Source: The BigDAWG Polystore System and
Architecture, HPEC’2016, Vijay Gadepally

• Consider patient data in an Intensive Care Unit (e.g. MIMIC

II data set*)

6

Big Data in the Real World

• Demographic
• Caregiver

notes
• Medical

charts
• Lab test

results
• Xray, MRI,

etc.

• EKG traces
• Blood

oxygen
• Blood

pressure
• EEG traces

The challenge … apply predictive analytics across all data … so we

can show up to restart a heart before it stops beating!!!

* MIMIC: Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/

7

Big Data in the Real World
Messy, heterogeneous, complex, streaming …

• Demographic
• Caregiver

notes
• Medical

charts
• Lab test

results
• Xray, MRI,

etc.

• EKG traces
• Blood

oxygen
• Blood

pressure
• EEG traces

tables

documents

#images

Arrays

Arrays

Time Series

Time Series

tables

tables

• Consider patient data in an Intensive Care Unit (e.g. MIMIC

II data set*)

Time series and tabular data are stored in a DBMS.

Other data? Flat files

MIMC doesn’t include images. We are talking to several groups to add an image database to our project

* MIMIC: Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/

Analysis of published MIMICII papers

• Data in databases is

used; data in files is not

–Data in files is nearly

equivalent to deleting the

data

Data Volume
TBGB PB

N
u

m
b

e
r

o
f

P
a

p
e

rs

100

10

1
files*

databases*

*Based on PhysioNet
MIMIC2 ICU data

1000
1
0
0
x

1000x

Source: Vijay Gadepally of MIT Lincoln labs

We must bring the power of
data bases to all data

So we should cram all the data into one DBMS?

NO!!! One Size Does Not Fit All*

Count and Find Operations

• SQL database (PostgreSQL) better for some operations than Array database (SciDB)

10

100

1000

10000

100000

T
im

e
 T

a
k
e
n

 (
m

il
li

s
e
c
o

n
d

s
)

Number of Database Entries

PostGRES - Count Entries

SciDB - Count Entries

PostGRES - Discrete Entries

SciDB - Discrete Entries

Typical DB Operations

Better

Worse

103 104 105 106 107

*Stonebraker, Michael, and Ugur Cetintemel. "" One size fits all": an idea whose time has come and
gone." 21st International Conference on Data Engineering (ICDE'05). IEEE, 2005.

Third Party Names are the property of their owners

A more extreme “one size does not fit all” example:
TileDB a new array data storage manager optimized for Sparse Arrays

x

y

cell

empty cell

dimensions

tile

attribute values

(a1, a2, …, am)

Logical representation Physical representation

(x, y) a1

…

am

celltile

Filescoordinates

Tile: Atomic unit of processing

Manage array storage as tiles of different shape/size in the
index space, but with ~equal number of non-empty cells

Stavros Papadopoulos of Intel created TileDB

Open Source release: https://github.com/Intel-HLS/GenomicsDB

TileDB is ideal for storing Genomics Data

Positions (~3 Billion)
(chromosome+position)

Samples
(gVCF)

~100K and
growing

Non-empty cell
(only END of gVCF range)

A gVCF range

coords
(sampleID, END)

START

…

Binary files (one per attribute)

START

• Represent variation of a sample from a reference Genome

(Genome Variant Call format or gVCF)

• Store as a sparse 2D array in TileDB … store a non-empty cell

for every END endpoint of the gVCF ranges

• The cells are sorted in
column-major order, and
compressed

Third Party Names are the property of their owners

One Size Does Not Fit All

Better

Worse

1.8922.0152.1042.3772.672 3.439 5.507 9.16

0 200 400 600 800 1000 1200

0

20

40

60

80

100

120

140

160

180

BCF query

TileDB query

M
e
rg

e
 +

m
e
d
ia

n
 t

im
e
 (

in
 s

e
co

n
d
s)

Samples

GenomicsDB/TileDB combine gVCF operation + median (5K random positions)

Intel® Xeon® E5 2697 v2 CPU, 12 cores, dual socket, 128 GB RAM, CentOS6.6, Western Digital 4 TB WD4000F9YZ-0 as a ZFS RAID0 pool.

This is what happens when the data-store matches the data

BCF refers to the Broad processing pipeline highly optimized by Intel.

Third Party Names are the property of their owners

One Size Does Not Fit All

Better

Worse

1.8922.0152.1042.3772.672 3.439 5.507 9.16

0 200 400 600 800 1000 1200

0

20

40

60

80

100

120

140

160

180

BCF query

TileDB query

M
e
rg

e
 +

m
e
d
ia

n
 t

im
e
 (

in
 s

e
co

n
d
s)

Samples

GenomicsDB/TileDB combine gVCF operation + median (5K random positions)

Intel® Xeon® E5 2697 v2 CPU, 12 cores, dual socket, 128 GB RAM, CentOS6.6, Western Digital 4 TB WD4000F9YZ-0 as a ZFS RAID0 pool.

This is what happens when the data-store matches the data

BCF is the Broad processing pipeline highly optimized by Intel.

From Eric Banks ot the Broad (April 2016) speaking of TileDB….

“The time it now takes to perform the variant discovery
process went from eight days to 18 hours,” Banks said.

“However, that’s with 100 whole genomes. We routinely
process projects with thousands of samples, so that speedup

itself is truly transformative. …

http://genomicinfo.broadinstitute.org/acton/media/13431/broad-intel-collaboration

Third Party Names are the property of their owners

Three Eras of database technology

NoSQL

Relational (SQL)2006

NewSQL

1970

Relational
Model

E.F. Codd
(1970)

1980 1990 2010

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach

Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{ fay,jeff,sanjay,wilsonh,kerr,m3b,tushar,fikes,gruber} @google.com

Google, Inc.

Abstract

Bigtable is a distributed storage system for managing

structured data that is designed to scale to a very large

size: petabytes of data across thousands of commodity

servers. Many projects at Google store data in Bigtable,

including web indexing, Google Earth, and Google Fi-

nance. These applications place very different demands

on Bigtable, both in terms of data size (from URLs to

web pagesto satellite imagery) and latency requirements

(frombackendbulk processing to real-timedataserving).

Despite these varied demands, Bigtable has successfully

provided a flexible, high-performancesolution for all of

theseGoogleproducts. In thispaper wedescribethesim-

pledatamodel provided by Bigtable, which givesclients

dynamic control over data layout and format, and we de-

scribe thedesign and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,

implemented, and deployed a distributed storage system

for managing structured data at Google called Bigtable.

Bigtable is designed to reliably scale to petabytes of

data and thousands of machines. Bigtable has achieved

several goals: wide applicability, scalability, high per-

formance, and high availability. Bigtable is used by

more than sixty Google products and projects, includ-

ing Google Analytics, Google Finance, Orkut, Person-

alized Search, Writely, and Google Earth. These prod-

ucts use Bigtable for a variety of demanding workloads,

which range from throughput-oriented batch-processing

jobs to latency-sensitive serving of data to end users.

TheBigtableclustersused by theseproductsspan awide

range of configurations, from a handful to thousands of

servers, and storeup to several hundred terabytesof data.

In many ways, Bigtableresemblesadatabase: it shares

many implementation strategies with databases. Paral-

lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable

providesadifferent interfacethansuchsystems. Bigtable

does not support a full relational data model; instead, it

provides clients with a simple data model that supports

dynamic control over data layout and format, and al-

lows clients to reason about the locality propertiesof the

data represented in the underlying storage. Data is in-

dexed using row and column names that can bearbitrary

strings. Bigtablealso treatsdataasuninterpreted strings,

although clients often serialize various forms of struc-

tured and semi-structured data into these strings. Clients

can control the locality of their data through careful

choices in their schemas. Finally, Bigtable schema pa-

rameters let clientsdynamically control whether to serve

dataout of memory or from disk.

Section 2 describes the datamodel in moredetail, and

Section 3 provides an overview of the client API. Sec-

tion 4 briefly describestheunderlyingGoogleinfrastruc-

ture on which Bigtable depends. Section 5 describes the

fundamentals of the Bigtable implementation, and Sec-

tion 6 describes some of the refinements that we made

to improve Bigtable’s performance. Section 7 provides

measurements of Bigtable’s performance. We describe

several examples of how Bigtable is used at Google

in Section 8, and discuss some lessons we learned in

designing and supporting Bigtable in Section 9. Fi-

nally, Section 10 describes related work, and Section 11

presentsour conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-

dimensional sorted map. The map is indexed by a row

key, column key, and a timestamp; each value in themap

is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string

To appear in OSDI 2006 1

G R
 A
 P
 H
 U
 L
 O

Google
BigTable

Chang et al
(2006)

NewSQL
Cattell

(2010)

SQL Era NoSQL Era NewSQL Era Future

Fast analytics
inside

databases

Common
interface

Rapid ingest
for internet

search

SQL = Structured Query Language
NoSQL = Not only SQL

Third party names are the property of their owners

Source: The BigDAWG Polystore System and
Architecture, HPEC’2016, Vijay Gadepally

Applications
using

Multiple
storage

engines that
match the

needs of the
data.

How do we deal with multiple data bases?

• Programmer productivity requires Data Virtualization.

– A data access interface that hides the technical details of stored data,

such as location, storage structure, API, access language, and storage

technology.

• Typical mechanism for Data Virtualization? … Data Federation

– A form of data virtualization where the data stored in a heterogeneous

set of autonomous data stores is made accessible to data consumers as

one integrated data store using on-demand data integration.

15

SQL NoSQLNewSQL

Relational Array Key-Value

Data Federation Interface

How do we deal with multiple data bases?

• Data Federation … in practice

– The single interface imposes a single data model

– The DBMS are autonomous … not integrated!

• Therefore, disparate data models in the DBMS are hard to

support and the federated DBMS are typically based on a single

(e.g. SQL) data model ….

– forces a “One Size Fits All” perspective.

16

SQL SQLSQL

Relational Relational Key-value

Data Federation Interface

Polystore: a new twist on Data Federation

• Programmer productivity requires data virtualization, efficient

execution requires benefits of queries that exploit features of a

particular data-store

• Polystore:

– A form of data virtualization where the data stored in a heterogeneous set

of integrated data stores is exposed through a common interface but the

features of the individual data-stores are visible.

17

SQL NoSQLNewSQL

Relational Array Key-Value

Polystore Interface

Polystore: a new twist on Data Federation

• Polystore Design forces.

– Location independence: A query does not care which data-store in the

polystore system it will target. A huge convenience for programmers.

– Semantic Completeness: Any query natively supported by a data-store

in the Polystore system can be expressed.

• The challenge in designing a Polystore system is to balance

“location independence” and “Semantic Completeness” without

compromising efficient execution.

18

SQL NoSQLNewSQL

Relational Array Key-Value

Polystore Interface

Three Eras of database technology

NoSQL

Relational (SQL)2006

NewSQL

1970

Relational
Model

E.F. Codd
(1970)

1980 1990 2010

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach

Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{ fay,jeff,sanjay,wilsonh,kerr,m3b,tushar,fikes,gruber} @google.com

Google, Inc.

Abstract

Bigtable is a distributed storage system for managing

structured data that is designed to scale to a very large

size: petabytes of data across thousands of commodity

servers. Many projects at Google store data in Bigtable,

including web indexing, Google Earth, and Google Fi-

nance. These applications place very different demands

on Bigtable, both in terms of data size (from URLs to

web pagesto satellite imagery) and latency requirements

(frombackendbulk processing to real-timedataserving).

Despite these varied demands, Bigtable has successfully

provided a flexible, high-performancesolution for all of

theseGoogleproducts. In thispaper wedescribethesim-

pledatamodel provided by Bigtable, which givesclients

dynamic control over data layout and format, and we de-

scribe thedesign and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,

implemented, and deployed a distributed storage system

for managing structured data at Google called Bigtable.

Bigtable is designed to reliably scale to petabytes of

data and thousands of machines. Bigtable has achieved

several goals: wide applicability, scalability, high per-

formance, and high availability. Bigtable is used by

more than sixty Google products and projects, includ-

ing Google Analytics, Google Finance, Orkut, Person-

alized Search, Writely, and Google Earth. These prod-

ucts use Bigtable for a variety of demanding workloads,

which range from throughput-oriented batch-processing

jobs to latency-sensitive serving of data to end users.

TheBigtableclustersused by theseproductsspan awide

range of configurations, from a handful to thousands of

servers, and storeup to several hundred terabytesof data.

In many ways, Bigtableresemblesadatabase: it shares

many implementation strategies with databases. Paral-

lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable

providesadifferent interfacethansuchsystems. Bigtable

does not support a full relational data model; instead, it

provides clients with a simple data model that supports

dynamic control over data layout and format, and al-

lows clients to reason about the locality propertiesof the

data represented in the underlying storage. Data is in-

dexed using row and column names that can bearbitrary

strings. Bigtablealso treatsdataasuninterpreted strings,

although clients often serialize various forms of struc-

tured and semi-structured data into these strings. Clients

can control the locality of their data through careful

choices in their schemas. Finally, Bigtable schema pa-

rameters let clientsdynamically control whether to serve

dataout of memory or from disk.

Section 2 describes the datamodel in moredetail, and

Section 3 provides an overview of the client API. Sec-

tion 4 briefly describestheunderlyingGoogleinfrastruc-

ture on which Bigtable depends. Section 5 describes the

fundamentals of the Bigtable implementation, and Sec-

tion 6 describes some of the refinements that we made

to improve Bigtable’s performance. Section 7 provides

measurements of Bigtable’s performance. We describe

several examples of how Bigtable is used at Google

in Section 8, and discuss some lessons we learned in

designing and supporting Bigtable in Section 9. Fi-

nally, Section 10 describes related work, and Section 11

presentsour conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-

dimensional sorted map. The map is indexed by a row

key, column key, and a timestamp; each value in themap

is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string

To appear in OSDI 2006 1

G R
 A
 P
 H
 U
 L
 O

Google
BigTable

Chang et al
(2006)

NewSQL
Cattell

(2010)

SQL Era NoSQL Era NewSQL Era Future

Fast analytics
inside

databases

Common
interface

Rapid ingest
for internet

search

SQL = Structured Query Language
NoSQL = Not only SQL

Third party names are the property of their owners

Source: The BigDAWG Polystore System and
Architecture, HPEC’2016, Vijay Gadepally

Polystore:
matching data
to the storage

engine

BigDAWG
Polystore
Duggan
et. al.

(2015)

BigDAWG: A Prototype Polystore System

• BigDAWG
– Polystore: match data to

the storage engine

• BigDAWG Islands
– A data model + query

operations

– One or more storage
engines

– “Shim” connects a
BigDAWG query to a
data engine

– “Cast” migrates data
from one engine to
another

BigDAWG Common Interface

Visualizations Applications

Cast Cast

SQL NoSQLNewSQL

Relational Array Key-Value

Clients

Relational Island Array Island Island …

Shim Shim Shim Shim

BigDAWG: A Prototype Polystore System

• BigDAWG
– Polystore: match data to

the storage engine

• BigDAWG Islands
– A data model + query

operations

– One or more storage
engines

– “Shim” connects a
BigDAWG query to a
data engine

– “Cast” migrates data
from one engine to
another

BigDAWG Common Interface

Visualizations Applications

Cast Cast

SQL NoSQLNewSQL

Relational Array Key-Value

Clients

Relational Island Array Island Island …

Shim Shim Shim Shim

When an Island has a
single storage engine,
the full functionality of
that engine is exposed.

We call this a
“degenerate Island”

BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

Optimizer: Parses the query and creates
a set of viable query plan trees with
possible engines for each subquery

Monitor: uses
existing

performance
information to
determine the
tree with the

best engine for
each subquery

Migrator:
moves data from
engine to engine
when the plan

calls for it

Executor: figures out how to best
join the collections of objects and

then executes the query

BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

A Big DAWG Query

bdarray(

filter(

bdcast(

bdrel(select bodc_sta, time_stp, interp_sal

from sampledata.main)

, intrp_salinity

, '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]‘

, array)

, interp_sal < 35))

25

A Big DAWG Query

bdarray(

filter(

bdcast(

bdrel(select bodc_sta, time_stp, interp_sal

from sampledata.main)

, intrp_salinity

, '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]‘

, array)

, interp_sal < 35))

26

Using the array island, issue the
island’s filter operation

filter([source_array], [logical_expression])

Result is an array with rows for which
interp_sal is less than 35

A Big DAWG Query

bdarray(

filter(

bdcast(

bdrel(select bodc_sta, time_stp, interp_sal

from sampledata.main)

, intrp_salinity

, '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]‘

, array)

, interp_sal < 35))

27

Create the array for the filter op by
casting the table formed by this

subquery from the relational island
to the array island

Bdcast ([source_query], name, [Dest_schema_parameters], [target])

A Big DAWG Query

bdarray(

filter(

bdcast(

bdrel(select bodc_sta, time_stp, interp_sal

from sampledata.main)

, intrp_salinity

, '<bodc_sta:int64, time_stp:datetime, interp_sal:double> [i=0:*,1000,0]‘

, array)

, interp_sal < 35))

28

The array created is named “intrp_salinity”. It has three
attributes (bodc_sta, time_stp, and interp_sal) with

unbounded number of rows (i=0:*) broken down into
chunks of size 1000 with 0 overlap

BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

Optimizer: Parses the query and creates
a set of viable query plan trees with
possible engines for each subquery

Optimizer: turns queries into a logical plan

• The Optimizer generates Logical plans corresponding to

the input query.

– Works with the “monitor” to track historic plans and select the best

plan.

• The Optimizer uses planners native to an Island.

• What about cross Island Optimization?

– We need to build these ourselves

30

Optimization: Finding the right Island to run a query

1.368

4.655

197.698

1

10

100

1000

Neo4J Postgres SciDB

E
x
e
c
u
ti
o
n
 t

im
e
 i
n
 s

e
c
o
n
d
s

Engine used for each experiment

Path-finding with known ends*
* 200,000 nodes and

approx. 4 million edges

Can we translate queries between Islands and then run on
the Island that gives us the best performance?

SciDB array database from Neo4 graph database from

Third Party Names are the property of their owners

Goal: Translate queries between islands

• Approach:

– Build a translation framework

– Equivalence rules mapping between Islands

• Example equivalence rule …

32

• {name: “SQL to AFL matrix multiplication”,

source : SQL, destination : AFL,

{matrix_1 : table,

original_attribute:

{row : integer, col : integer, value : double precision}},

destination_attribute:

{row : dimension, col : dimension, value : double}

{matrix_2 : …}

source_query: “SELECT m1.row, m2.col, ...”,

destination_query: “spgemm(matrix_1, matrix_2)”}
Query

mappings

Data
Structure
mappings

Islands

Rule name

Using Equivalence Rules for translation

AFL: multiply(a, b)
SELECT SUM JOIN

GROUP BY ORDER BY

Pattern

Matching

SELECT SUM JOIN

GROUP BY | Faster, Order irrelevant

Type

int64 integer

string text

float real

✔

✔

Language

CQL SQL

AFL CQL

AFL SQL

AFL BSON

SQL BSON

✔

Data Structure

TableArray
✔

Array
Table

Array

Query

SELECT SUM JOIN
GROUP BY ORDER BY

multiply

SELECT SUM JOIN
GROUP BY

multiply
✔

✔

Unordered

The Semantic Lattice

• Organize collections of equivalence rules (both generated

and user provided) into a semantic lattice to reason over

sets of options

Graph Engine 4 Engine 1 Engine 2 Engine 3

Relational
Island

Array Island

GA RAGR

GRA

Degenerate
Graph Island

Translate more
general queries

Translate more
expressive queries

Optimizer constructed nodes

Existing polystore islands

BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

Monitor: uses
existing

performance
information to
determine the
tree with the

best engine for
each subquery

BigDAWG Monitor: find best execution plan for a Query

Input Query, Q

Mode?

Production mode Training mode

Postgress
database of past

queries

ID = signature(Q)

Do we have anything
matching(ID)?

Return
arbitrary
plan/engine
combination

Return that
plan/engine
combination

yesno

Generate reasonable
plan/engine combinations

Save plan/engine combs with:
• the query
• its signature, ID

Monitor

Run (when sys load is low)
and update database:
• the fastest Plan for ID,
• Runtime
• Date run

Production mode gains

• 10 different queries with two possible query trees tested

• Training mode – each query run through two possible query trees

• Production mode – executor runs best query determined by training mode

• Best case: Production mode is ~60% of time running without Monitor (randomly

select 1 of the 2 possible query trees)

37

Production mode gains

• 10 different queries with two possible query trees tested

• Training mode – each query run through two possible query trees

• Production mode – executor runs best query determined by training mode

• Best case: Production mode is ~60% of time running without Monitor (randomly

select 1 of the 2 possible query trees)

38

This is all very preliminary … we know there is much left to
explore before we have a production worthy monitor.

But early results are promising. Future work:
• Different Signature definitions to improve matching and

reduce searching times.
• Explore a broader range of queries and engines
• Machine learning to predict “best” plans for new queries

even when matching queries aren’t available.

BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

Executor: figures out how to best
join the collections of objects and

then executes the query

The BigDAWG Executor

• The executor receives a Logical Query Plan from the

optimizer

– Logical plan: an execution graph … nodes with tasks and

dependencies

• Basic nodes that map onto a single island

– Issue executions on respective islands

– Execute in parallel with a dataflow pattern

• Complex executions spanning Islands are more involved.

40

The BigDAWG Executor: complex queries

• join-units: small non-overlapping ranges of tuples (rows in PostgreSQL, cells in

SciDB, key-value pairs in Accumulo, etc.) participating in the join.

• Each join-unit consists of a fraction of the full query predicate, and tuples are

mapped to a join-unit based on the value of their join attribute.

41

Skew
Examination

Join-Unit
Assignment

Join-Unit
Colocation

Tuple
Comparison

Join
Result
Union

Consider the Shuffle join: A multi-engine join where query predicates are

“shuffled” between Islands

Find distribution
of join attributes

to use in load
balancing

Schedule join
units for
execution

Migrate join units
to execution
engines as

needed

Carry out the join
operation of join

units

Outputs of
engines combined

on the single
destination engine

Join-Unit assignments
• The challenge is to distribute join-units (i.e. “computations”)

among engines to maximize performance.

• Several different strategies were considered

– DFB: Move all tables to the final destination engine in the plan.

– MFB: Pick the engine that requires movement of smallest tables

– Hash: Randomly assigns tuples to participating engines

– MBH: Assign-join unit to engine that minimizes tuple movement

– Tabu: A local optimization algorithm that improves on the MBH result

• Experiment

– Generate data sets with known skew from a Zipf (power law)

distribution ranging from uniform (α=0) to heavily skewed (α=2)

– Considered full table scan vs sampling for understanding skew ..

sampling was less expensive and resulted in good distributions.

42DFB: Destination Full Broadcast, MFB: Minimal Full Broadcast, MBH: Minimum bandwidth Heuristic

Skew
agnostic

Skew: a measure of how uneven the distribution of data is in a Data Base.

0

10

20

30

40

50

60

70

80

90

100
D

FB
M

F
B

H
as

h
M

B
H

Ta
bu

D
FB

M
F

B
H

as
h

M
B

H
Ta

bu

D
FB

M
F

B
H

as
h

M
B

H
Ta

bu

D
FB

M
F

B
H

as
h

M
B

H
Ta

bu

D
FB

M
F

B
H

as
h

M
B

H
Ta

bu

0 0.5 1 1.5 2

Q
ue

ry
 D

ur
at

io
n

(M
in

s)

Zipfian Alpha

examination assignment colocation comparison union

Shuffle Join results:
Different load balancing algorithms and data-skews

MBH and Tabu consider
skew to produce a more
balanced load … hence

outperform other methods

As skew
increases,

skew-agnostic
assignments
(DFB, MFB,

Hash) perform
much worse

At low levels of skew,
the hash strategy

performs well because
of uniform data

2 Postgress instances running:
SELECT * FROM A,B WHERE A.id=B.id

System 1: Four 3.5 GHz Intel® Xeon® cores, 8 GB, ~150 GB Data.
System 2: One 3.5 GHz Intel® Xeon® cores, 8 GB, ~75GB Data

BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

Migrator:
moves data from
engine to engine
when the plan

calls for it

Data Migrator Pipeline

45

Extract
- Read
metadata

- Extract
data

Transform &
Migrate

- Logical
transformation

- Format
conversion

- Compression
- Local / remote

Load
- Write
metadata

- Load
data

DBMS X DBMS Y

No disk materialization

Current approach: CSV migration

46

DBMS X DBMS Y

CSV format
1,”Adam”,6.00; 2,”Aaron”,7.00

1001 -> 0110 0110

0010101

DBMS YDBMS X

Our approach: binary migration

47

SINGLE Binary format: Y

1001

TRANSFORMBinary format X Binary format Y

Data Migration from PostgreSQL to SciDB

TRANSFORMATION is 3X, DIRECT is 4X faster than CSV
migration

MIMIC II data - waveform(int, int, double)

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

M
ig

ra
ti
o
n

 T
im

e
 (

s
e
c
)

Data size (GB)

CSV migration

binary migration with
TRANSFORMATION

DIRECT binary migration

48

Data Migration from PostgreSQL to SciDB

TRANSFORMATION is 3X, DIRECT is 4X faster than CSV
migration

MIMIC II data - waveform(int, int, double)

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

M
ig

ra
ti
o
n

 T
im

e
 (

s
e
c
)

Data size (GB)

CSV migration

binary migration with
TRANSFORMATION

DIRECT binary migration

49

• And while we won’t discuss it here, the team has also

explored

– Parallel data migration

– Data Compression

– Adaptive methods to respond dynamically to varying

resource loads.

BigDAWG Middleware

Visualizations Applications

Cast Cast

Clients

Relational Island Array Island Island …

Shim
Shim

Shim Shim

How well does this work when we pull
everything together into one system?

Prototype BigDAWG Overhead

0

200

400

600

800

1000

1200

1400

1600

1800

2000

�Count
(Postgres)

�Average
(Postgres)

�Average
(SciDB)

�Standard
Deviation
(SciDB)

Count (SciDB)
�Distinct
Values
(SciDB)

T
im

e
 T

a
k
e
n

 (
m

s
e
c
)

Overhead Incurred When Using BigDAWG
For Common Database Queries

Overhead Incurred (ms)

Query without BigDAWG (ms)

Minimal

Overhead

Third Party Names are the Property of their Owners.

52

Big Data in the real world
Messy, heterogeneous, complex, streaming …

• Demographic
• Caregiver

notes
• Medical

charts
• Lab test

results
• Xray, MRI,

etc.

• EKG traces
• Blood

oxygen
• Blood

pressure
• EEG traces

tables

documents

#images

Arrays

Arrays

Time Series

Time Series

tables

tables

• Consider patient data in an Intensive Care Unit (e.g. MIMIC

II data set*)

MIMC doesn’t include images. We are talking to several groups to add an image database to our project

* MIMIC: Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/

BigDAWG: A Prototype Polystore System

Islands

• D4M (Associative Arrays)

• Myria (SQL+ Iteration)

• Streams

• Degenerate Islands

Application level tools

• Data Exploration

• Data Visualization

• Deep Analytics

• Streaming Analytics

• Extract-Transform-Load

Third Party Names are the Property of their Owners.

BigDAWG Streaming Island: S-Store
S-Store:

• A system for
Streaming
transactional
semantics (ACID,
order, exactly once)

• ETL: Extract +
Transform as a
streaming process …
potentially much
more efficient than
current approaches!

Streaming
Data

BigDAWG Common Interface

Visualizations Applications

CastCast

SQLStreaming NewSQL

Relational ArrayS-Store

Clients

Relational Island Array Island

Shim Shim ShimShim

Streaming Island

Shim

Polystore Case Study: MIMIC II Dataset

Data Explorer S-PI Overview Screen

Video Link

Tell Me Something
Interesting

Text Analytics

Waveform Analytics

Streaming Analytics
(S-Store)

//localhost/Users/vijayg/devel/papers_and_talks/2015-division_seminar/BigDAWGSeminarVideoMP4.mp4
//localhost/Users/vi24487/devel/papers_and_talks/2016-hpec/presentations/smallDemoVideo.mov

• Goal:

– Find patients with similar ECG

time-series*

• Procedure

– Perform Discrete Wavelet Transform

of ECG

–Generate wavelet coefficient histogram

– TF-IDF waveform coefficients (weight

rare changes higher)

–Cluster and correlate against other ECGs

BigDAWG Polystore Waveform Analytics

• Show timings for individual

components in two different

DBMS scenarios

–Option 1: Do everything in one DB

–Option 2: Use the DB most suited

for each component

• Tough without coordinator SW

• Incur inter-database cast

operation overhead

Top-K
Clusters

Signal

Processing

Discrete

Wavelet

Transform

(DWT)

Coefficient Binning and Weighting

Frequency
Coefficient

Binning

Freq.
Coefficient

Outlier
Weighting

Clustering

k-Nearest
Neighbors

1000s of

Patient

ECGs

Input Output

TF-IDF=Term Frequency-Inverse Document Frequency
* A novel method for the efficient retrieval of similar multiparameter physiologic time
series using wavelet-based symbolic representations, Saeed & Mark, AMIA 2006

Polystore Analytics Performance

Better Worse

0 50 100 150 200 250 300

Hybrid

Myria

SciDB

Time Taken (Seconds)

T
e
c
h

n
o

lo
g

y
 U

s
e
d

Time taken to perform analytic using different technologies

Discrete Wavelet Transform

Term Frequency-Inverse
Document Frequency

K-Nearest Neighbors

Third Party Names are the Property of their Owners.

Future work

• Open source release of BigDAWG Q1’2017

• Explore Features in Myria that can help BigDAWG

Myria: A stack for Big Data Analytics

RACO Middleware

Translation, Optimization, Orchestration

Data Transfer with PipeGen

MyriaL and SQL

SciDB

Array

Spark

Relational
MyriaX

Relational

…

http://myria.cs.washington.edu

Myria is a Polystore system … emphasizes location independence

• Supports operations across multiple data stores

• Includes its own query execution engine MyriaX

• Occupies a hybrid relational-array Island in BigDAWG

Myria is a Cloud Service

• Deployed in the Amazon cloud

• Focus on efficiency and productivity

• Tested on applications from multiple scientific domains

Third Party Names are the Property of their Owners.

Future work

• Open source release of BigDAWG Q1’2017

• Explore Features in Myria that can help BigDAWG
– Cloud infrastructure

– Web front end

– Automatically generated casts with Mryia PipeGen

• Explore probabilistic data structures in the executor to further
reduce data transfers.

• Explore additional datasets to stress-test the system
– Ocean Metagenomics work underway

• Add new Islands
– TileDB, Tuppleware (from Brown)

• Build on S-Store work to support ETL capabilities in
BigDAWG.

Third Party Names are the Property of their Owners.

Conclusion

• The future belongs to polystore systems

– A single high level data management system that is composed of

many individual storage management systems.

– Storage management matches the data for a better performance.

– Analytics embedded into the storage managers to keep computing near

the data.

• BigDAWG is an effective Prototype to prove the concept.

– There is a great deal of work needed to turn it into a general

purpose tool for data scientists.

– Early results, however, are encouraging

October 10, 2016:
Full workshop papers
submission deadline

Research topics included in the workshop:
• New Computational Models for Big Data
• Languages/Models for integrating disparate data (e.g. graphs,

arrays, relations)
• Query evaluation and optimization in federated or polystore

systems
• High Performance/Parallel Computing Platforms for Big Data
• Integration of HPC and Big Data platforms
• Data Acquisition, Integration, Cleaning, and Best Practices
• Complex Big Data Applications in Science, Engineering, Medicine,

Healthcare, Finance, Business, Transportation, Retailing,
Telecommunication, Government and Defense applications

• Efficient data movement and scheduling, failures and recovery for
analytics

Keynotes

Fatma Ozcan
of IBM

Luna Dong
of Amazon

Workshop: Managing Heterogeneous Big Data

co-located with IEEE Big Data Conference

Details

December 5-8, 2016:
Workshops Dates

November 15, 2016:
Camera-ready of
accepted papers

Contact:
Vijay Gadepally
(vijayg@mit.edu)

https://goo.gl/oLFR1F

mailto:vijayg@mit.edu

References (All in the HPEC’2016 Proceedings)

• The BigDAWG Polystore System and Architecture Vijay Gadepally, Peinan

Chen (MIT), Jennie Duggan (Northwestern University), Aaron Elmore (University

of Chicago), Brandon Haynes (University of Washington), Jeremy Kepner,

Samuel Madden (MIT), Tim Mattson (Intel), Michael Stonebraker (MIT)

• BigDAWG Polystore Query Optimization Through Semantic Equivalences

Zuohao She, Surabhi Ravishankar, Jennie Duggan (Northwestern University)

• The BigDawg Monitoring Framework Peinan Chen, Vijay Gadepally, Michael

Stonebraker (MIT)

• Cross-Engine Query Execution in Federated Database Systems Ankush M.

Gupta, Vijay Gadepally, Michael Stonebraker (MIT)

• Data Transformation and Migration in Polystores Adam Dziedzic, Aaron J.

Elmore (University of Chicago), Michael Stonebraker (MIT)

• Integrating Real-Time and Batch Processing in a Polystore John Meehan,

Stan Zdonik Shaobo Tian, Yulong Tian (Brown University), Nesime Tatbul (Intel),

Adam Dziedzic, Aaron Elmore (University of Chicago)

file://psf/Home/Documents/Work/confs-paper-book-rev-cache/HPEC/HPECProc2016/index_htm_files/R-PID4408159.pdf
file://psf/Home/Documents/Work/confs-paper-book-rev-cache/HPEC/HPECProc2016/index_htm_files/R-PID4407447.pdf
file://psf/Home/Documents/Work/confs-paper-book-rev-cache/HPEC/HPECProc2016/index_htm_files/R-s-store-slash.pdf
file://psf/Home/Documents/Work/confs-paper-book-rev-cache/HPEC/HPECProc2016/index_htm_files/R-PID4408167.pdf
file://psf/Home/Documents/Work/confs-paper-book-rev-cache/HPEC/HPECProc2016/index_htm_files/R-PID4350489.pdf
file://psf/Home/Documents/Work/confs-paper-book-rev-cache/HPEC/HPECProc2016/index_htm_files/R-s-store-slash.pdf

